一种氮循环制冷的深冷分离一氧化碳气体的装置的制作方法

文档序号:17416261发布日期:2019-04-16 23:18阅读:360来源:国知局
一种氮循环制冷的深冷分离一氧化碳气体的装置的制作方法

本实用新型属于深冷设备领域,具体涉及一种氮循环制冷的深冷分离一氧化碳气体的装置。



背景技术:

一氧化碳(CO)和氢气(H2)是重要的基础化工原料,广泛用于羰基合成等化工过程,例如甲醇羰基化制醋酸、醋酐、甲酸、草酸和二甲基甲酰胺等,以及光气合成、生产聚碳酸酯、聚氨酯、合成金属羰基化合物等。目前CO和H2分离主要有深冷法、吸收法和变压吸附法等。其中的深冷分离方法适用于大规模的工业生产,能够有效的获得高纯度的CO,分离效果十分理想。深冷分离法的核心是利用混合气体中各组分沸点的差异,在精馏塔中来实现气体混合物的分离。中国专利(公开号CN1860338A)记载了一种分离含有CO、H2和N2的工艺方法。该方法存在的缺陷是:其分离CO和H2的流程比较复杂,而且能耗较高。而申请号为CN201120212483.3的实用新型专利也公开了一种深冷分离一氧化碳和氢气的装置,申请号为CN200780047765.9的发明专利公开了一种通过低温蒸馏分离至少包含氢、氮和一氧化碳的混合物的方法和设备,申请号为CN200480030835.6的发明专利公开了一种低温蒸馏生产一氧化碳和/或氢和/或氢和一氧化碳混合物的方法和设备,但这些设备在使用过程中也或多或少存在工艺、能耗上的缺陷,有待于进一步改进。



技术实现要素:

本实用新型的目的在于解决现有技术中金属焊盘使用中存在的问题,并提供一种氮循环制冷的深冷分离一氧化碳气体的装置。

本实用新型所采用的具体技术方案如下:

一种氮循环制冷的深冷分离一氧化碳气体的装置,其包括冷箱和氮气压缩机;所述冷箱中设有第一主换热器、第二主换热器、过冷器、汽提塔再沸器、脱氮塔再沸器、脱甲烷塔冷凝器、脱甲烷塔再沸器、气液分离罐、富氢气闪蒸罐、汽提塔、脱氮塔和脱甲烷塔;

净化后原料气输入口通过管道进入冷箱,然后依次流经第一主换热器、汽提塔再沸器、脱氮塔再沸器、第二主换热器、过冷器后进入富氢气闪蒸罐,富氢气闪蒸罐罐顶富氢气出口通过管道依次流经过冷器、第二主换热器、第一主换热器后出冷箱并通至界区;富氢气闪蒸罐罐底的液体出口管道分为两条支路,一条支路经过过冷器进入汽提塔中部,另一条支路进入汽提塔顶部;汽提塔塔顶的闪蒸气出口通过管道依次流经过冷器、第二主换热器、第一主换热器后出冷箱并通至界区;汽提塔底部部分液体通过管道进入汽提塔再沸器换热蒸发后重新输入汽提塔下部,汽提塔塔底的液体出口通过管道连接脱氮塔中部;

脱氮塔底部部分液体通过管道进入脱氮塔再沸器换热蒸发后重新输入脱氮塔下部,脱氮塔塔顶气体出口通过管道连接脱氮塔顶冷凝器,脱氮塔底部的液体出口通过管道连接至脱氮塔顶冷凝器,而液体在脱氮塔顶冷凝器中蒸发后通过管道输入脱甲烷塔中部;

脱甲烷塔底部部分液体通过管道进入脱甲烷塔再沸器换热蒸发后重新输入脱甲烷塔再沸器下部;脱甲烷塔塔顶的CO气体出口依次通过第二主换热器、第一主换热器后出冷箱并通至界区;脱甲烷塔塔底的富甲烷液出口与脱氮塔顶冷凝器冷凝后的富氮气出口通过管道汇合后,依次经过第二主换热器、第一主换热器后出冷箱并通至界区;

所述的氮气压缩机的循环氮气出口通过管道输入冷箱,依次经过第一主换热器、汽提塔再沸器、脱氮塔再沸器、脱甲烷塔再沸器后进入气液分离罐,气液分离罐的循环液氮出口分为三路,第一路通过管道输送至脱氮塔塔顶,第二路通过管道输送至脱甲烷塔塔顶,第三路通过管道依次流经过冷器、第二主换热器、第一主换热器后出冷箱并连接氮气压缩机的一级入口;脱甲烷塔塔顶的蒸发氮气出口通过管道依次流经第二主换热器、第一主换热器后出冷箱并连接氮气压缩机的二级入口;气液分离罐罐顶气体出口与脱氮塔塔顶蒸发氮气出口通过管道汇合后,再依次流经第二主换热器、第一主换热器后出冷箱并连接氮气压缩机的三级入口;

补冷液氮通道从外部进入冷箱,依次流经第一主换热器、第二主换热器、过冷器出冷箱至界区。

作为优选,所述的脱氮塔顶冷凝器有两个,第一脱氮塔顶冷凝器和第二脱氮塔顶冷凝器分别设置于脱氮塔塔顶,并联工作。

作为优选,所述的净化后原料气输入口通过管道连接分子筛吸附系统的净化后原料气出口。

作为优选,所述的汽提塔、脱氮塔和脱甲烷塔均为填料塔。

作为优选,所述的补冷液氮通道的入口连接液氮贮槽。

本实用新型的深冷分离装置可以从分子筛吸附系统净化后的原料气中提取出CO产品气、燃料气、闪蒸汽和富氢气,从而实现有用组分的高效分离。而且,本实用新型采用单独的循环氮气制冷系统,为整个装置提供冷量。整个装置中,根据换热网络的优化情况,进压缩机的氮气压力可以分为两个或三个等级,从而可以节约深冷分离的能耗。

附图说明

图1为一种氮循环制冷的深冷分离一氧化碳气体的装置的结构示意图;

图2为图1中B1位置的放大示意图;

图中:第一主换热器E1、第二主换热器E2、过冷器E3、汽提塔再沸器E4、第一脱氮塔顶冷凝器E5、脱氮塔再沸器E6、第二脱氮塔顶冷凝器E7、脱甲烷塔冷凝器E8、脱甲烷塔再沸器E9、气液分离罐V1、富氢气闪蒸罐V2、汽提塔T1、脱氮塔T2和脱甲烷塔T3。

具体实施方式

下面结合附图和具体实施方式对本实用新型做进一步阐述和说明。本实用新型中各个实施方式的技术特征在没有相互冲突的前提下,均可进行相应组合。

如图1所示,一种氮循环制冷的深冷分离一氧化碳气体的装置,其主要包括氮气压缩机系统A和冷箱分离单元B。氮气压缩机系统A采用三级压缩机,用于为整个冷箱分离单元B提供冷量。而冷箱分离单元B中主体为冷箱,冷箱中设有板翅式换热器、脱甲烷塔冷凝器E8、脱甲烷塔再沸器E9、气液分离罐V1、富氢气闪蒸罐V2、汽提塔T1、脱氮塔T2和脱甲烷塔T3。板翅式换热器包括第一主换热器E1、第二主换热器E2、过冷器E3,将换热器分为三部分,主要是为了优化和匹配每股物流的换热。这样换热器比较紧凑,没有浪费的通道。本实施例中,汽提塔T1、脱氮塔T2和脱甲烷塔T3均为填料塔,塔的中部装填有填料。汽提塔再沸器E4、脱氮塔再沸器E6、脱甲烷塔再沸器E9分别设置于汽提塔T1、脱氮塔T2、脱甲烷塔T3的塔底部,用于将塔底的液体进行换热蒸发,以气体形式从塔底由下至上流动。脱氮塔T2塔顶设有两个脱氮塔顶冷凝器,第一脱氮塔顶冷凝器E5和第二脱氮塔顶冷凝器E7以并联的方式设在塔顶,用于对塔顶排出的气体进行冷凝。脱甲烷塔T3的塔顶也设有一个脱甲烷塔冷凝器E8,用于对塔顶排出的气体进行冷凝。

该装置中,各设备的连接方式如下:

分子筛吸附系统的净化后原料气输送至原料气输入口,原料气输入口再通过管道连接进入冷箱,然后依次流经第一主换热器E1、汽提塔再沸器E4、脱氮塔再沸器E6、第二主换热器E2、过冷器E3后进入富氢气闪蒸罐V2。富氢气闪蒸罐V2罐顶设有富氢气出口,而罐底设有液体出口。富氢气闪蒸罐V2罐顶富氢气出口通过管道依次流经过冷器E3、第二主换热器E2、第一主换热器E1后出冷箱并通至界区,用于输出富氢气。富氢气闪蒸罐V2罐底的液体出口管道分为两条支路,一条支路经过过冷器E3进入汽提塔T1中部的填料区,另一条支路进入汽提塔T1顶部的填料上方,使液体在汽提塔T1中从上到下流动。汽提塔T1塔顶设有闪蒸气出口,汽提塔T1塔顶的闪蒸气出口通过管道依次流经过冷器E3、第二主换热器E2、第一主换热器E1后出冷箱并通至界区,用于输出闪蒸气。汽提塔T1底部会存储有部分液体,汽提塔T1底部的液体存储区通过一条管道连接汽提塔再沸器E4,然后再重新循环回汽提塔T1的填料下方,使得汽提塔T1底部液体通过管道进入汽提塔再沸器E4,在汽提塔再沸器E4内换热蒸发后重新输入汽提塔T1下部,然后气体上升并与向下流动的液体进行换热。汽提塔T1塔底的液体出口还通过一条管道连接脱氮塔T2,用于将液体输送至脱氮塔T2中部的填料区。

脱氮塔T2底部也会存储有部分液体,脱氮塔T2底部的液体存储区也通过一条管道连接脱氮塔再沸器E6,然后再重新循环回脱氮塔T2的填料下方,使得液体通过管道进入脱氮塔再沸器E6,在脱氮塔再沸器E6中换热蒸发后重新输入脱氮塔T2下部,然后气体上升并与向下流动的液体进行换热。脱氮塔T2塔顶气体出口通过管道分别连接第一脱氮塔顶冷凝器E5和第二脱氮塔顶冷凝器E7,塔顶气体在两个冷凝器中液体冷凝,第一脱氮塔顶冷凝器E5和第二脱氮塔顶冷凝器E7中经过冷凝处理后的富氮气汇合后,再与后续的脱甲烷塔T3塔底富甲烷液汇集,经板翅式换热器复热后出冷箱,去界区。脱氮塔T2底部的液体出口通过管道连接至脱氮塔顶冷凝器,将部分液体输送至冷凝器中,用于为冷凝提供部分冷量。而液体在脱氮塔顶冷凝器中吸热蒸发后,通过管道输入脱甲烷塔T3中部。

脱甲烷塔T3底部也存在液体蓄积,脱甲烷塔T3底部的液体存储区也通过一条管道连接脱甲烷塔再沸器E9,然后再重新循环回脱甲烷塔T3的填料下方,使得脱甲烷塔T3底部部分液体通过管道进入脱甲烷塔再沸器E9中,在脱甲烷塔再沸器E9中换热蒸发后重新输入脱甲烷塔再沸器E9下部,然后气体上升并与向下流动的液体进行换热。脱甲烷塔T3塔顶的CO气体出口依次通过第二主换热器E2、第一主换热器E1后出冷箱并通至界区,用于输出CO产品气。脱甲烷塔T3塔底蓄积富甲烷液,富甲烷液出口与脱氮塔顶冷凝器冷凝后的富氮气出口通过管道汇合后,依次经过第二主换热器E2、第一主换热器E1后出冷箱并通至界区,用于对外提供燃料气。

氮气压缩机具有三个入口,分别为一级入口、二级入口和三级入口,分别输入不同位置回流的气体;另外还具有一个循环氮气出口,将压缩后的氮气重新输入冷箱。氮气压缩机与冷箱中各设备的连接关系如下:

氮气压缩机的循环氮气出口通过管道输入冷箱,依次经过第一主换热器E1、汽提塔再沸器E4、脱氮塔再沸器E6、脱甲烷塔再沸器E9后进入气液分离罐V1,循环液氮在气液分离罐V1中发生气液分离。气液分离罐V1底部的循环液氮出口分为三路:第一路通过管道输送至脱氮塔T2塔顶的第一脱氮塔顶冷凝器E5或第二脱氮塔顶冷凝器E7中,用于提供冷凝的冷量;第二路通过管道输送至脱甲烷塔T3塔顶的脱甲烷塔冷凝器E8,用于提供冷凝的冷量;第三路通过管道依次流经过冷器E3、第二主换热器E2、第一主换热器E1后出冷箱并连接氮气压缩机的一级入口,使得液氮不断循环。脱甲烷塔T3塔顶的脱甲烷塔冷凝器E8中液氮蒸发换热后产生的氮气,从蒸发氮气出口排出,通过管道依次流经第二主换热器E2、第一主换热器E1后出冷箱并连接进入氮气压缩机的二级入口。气液分离罐V1罐顶气体出口与脱氮塔T2塔顶蒸发氮气出口通过管道汇合后,再依次流经第二主换热器E2、第一主换热器E1后出冷箱并连接氮气压缩机的三级入口。

另外,板翅式换热器在运行过程中,需要外部输送补冷液氮,补冷液氮贮存于液氮贮槽中。补冷液氮通道一端连接液氮贮槽,另一端从外部进入冷箱,依次流经第一主换热器E1、第二主换热器E2、过冷器E3补充冷量后,再出冷箱至界区排放。

本实用新型中采用氮气压缩机制冷循环代替常规的CO压缩机,能够带来两方面的优点。一方面,氮气压缩机的使用降低了设备的投资成本,因为CO属于可燃、有毒气体,因此CO压缩机必须采用带有干气密封的压缩机,避免可燃有毒气体泄漏到环境中,造成人员的伤害;而氮气是一种不可燃的惰性气体,只要避免大量排放导致人员窒息即可,因此氮气压缩机通常不用带干气密封装置,不仅使装置投资降低,而且更安全。另一方面,通过优化氮气节流制冷的温度等级,还能够使整个工艺系统的能耗得到降低。

另外,为了便于控制,上述装置的各管道上均可设置对应的控制阀门。

基于上述装置的深冷分离一氧化碳气体的工艺,其步骤如下:

将来自分子筛吸附系统的净化后原料气通入冷箱,在第一主换热器E1中降温后,作为汽提塔T1塔底热源以及脱氮塔T2塔底热源,然后再冷却至-182℃后进入富氢气闪蒸罐V2闪蒸,富氢气闪蒸罐V2罐顶富氢气依次通过过冷器E3、第二主换热器E2和第一主换热器E1复热后出冷箱,去界区;富氢气闪蒸罐V2罐底液体分为两部分,一部分液体经过冷器E3加热和节流后进入汽提塔T1中部,另一部分液体节流后进入汽提塔T1顶部;汽提塔T1塔底部分液体在汽提塔再沸器E4中通过热虹吸产生蒸汽,与自上而下的液体在汽提塔内填料表面逆向流动并进行充分传质传热,汽提塔T1塔顶闪蒸气依次经过冷器E3、第二主换热器E2和第一主换热器E1复热后出冷箱,去界区;汽提塔T1塔底液体节流后进脱氮塔中部。

脱氮塔T2塔釜中的液体在脱氮塔再沸器E6中经过原料气和循环氮气加热蒸发产生气体,与自上而下的液体在脱氮塔T2内填料表面逆向流动并进行传质传热;脱氮塔T2塔顶气体经过脱氮塔顶冷凝器冷凝后分离,塔顶富氮气经板翅式换热器复热后出冷箱,去界区;脱氮塔T2塔底液体节流后送入脱氮塔顶冷凝器提供部分冷量,蒸发后进入脱甲烷塔T3中部。

脱甲烷塔T3塔底部分液体在脱甲烷塔再沸器E9中通过循环氮气加热产生蒸汽,与自上而下的液体在脱甲烷塔T3内填料表面逆向流动并进行传质传热;在脱甲烷塔T3塔顶得到CO产品气,依次经第二主换热器E2、第一主换热器E1复热后出冷箱,去界区;脱甲烷塔T3塔底底部富甲烷液与脱氮塔T2顶富氮气混合后依次经第二主换热器E2、第一主换热器E1复热后作为燃料气出冷箱,去界区。

冷箱深冷分离的冷量由闭式循环的氮气压缩机系统提供。氮气压缩机出口的循环氮气进入冷箱,在第一主换热器E1中降温,并作为汽提塔T1和脱氮塔T2塔底热源,然后再作为脱甲烷塔T3塔底热源,再被冷却至-175℃后,进入气液分离罐V1,气液分离罐V1中一部分循环液氮节流去脱氮塔T2塔顶提供冷量,一部分作为脱甲烷塔T3塔顶冷源,另一部分节流后依次经过冷器E3、第二主换热器E2和第一主换热器E1复温,进入氮气压缩机一级入口,脱甲烷塔T3塔顶蒸发的氮气依次经第二主换热器E2、第一主换热器E1复热后,送入氮气压缩机二级入口,与氮气压缩机一级压缩后的循环氮气混合后,进入氮气压缩机进行二级压缩,气液分离罐V1罐顶气体与脱氮塔T2塔顶蒸发的氮气,依次经第二主换热器E2和第一主换热器E1复温后,进入压缩机的三级入口与氮气压缩机二级压缩后的循环氮气混合,经三级压缩后的循环氮气再从氮气压缩机出口输出,送入冷箱,为深冷分离提供冷量。

开车时通过补冷液氮通道将液氮贮槽中的补冷液氮输送进入主换热器第一主换热器E1、第二主换热器E2和过冷器E3中,为深冷分离提供冷量,复热后出冷箱,以常温氮气出界区。

由于氮气压缩机具有多级入口,因此在该装置运行过程中,可以根据换热网络的优化情况,将进入压缩机的氮气压力分为两个或三个等级,从而可以节约深冷分离的能耗。

本实用新型的工艺中,选用产品CO和液氮双冷源,此工艺充分利用了产品CO汽化蒸发的冷量,使换热网络更加优化,因此减少了用来制冷的循环氮气量,使整个系统能耗降低。

以上所述的实施例只是本实用新型的一种较佳的方案,然其并非用以限制本实用新型。有关技术领域的普通技术人员,在不脱离本实用新型的精神和范围的情况下,还可以做出各种变化和变型。因此凡采取等同替换或等效变换的方式所获得的技术方案,均落在本实用新型的保护范围内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1