一种光电人工湿地及其应用

文档序号:8935819阅读:1648来源:国知局
一种光电人工湿地及其应用
【技术领域】
[0001]本发明属于污水处理领域,具体涉及一种光电人工湿地及其应用。
【背景技术】
[0002]低污染水是引发水体富营养化的污染源之一,其治理为我国湖泊环境保护的重要组成部分,低污染水主要包括污水处理厂尾水、污染较重的沟渠水、农田灌溉退水等,由于其水质指标在污水处理厂排污标准与地表水V类标准之间,因此其未经处理直接排放会大幅增加受纳水体的氮磷等营养盐负荷,从而引发水体的富营养化。
[0003]太湖周边有近200座污水处理厂,其污水处理厂尾水作为低污染水之一,含有较高的硝态氮、总磷、氨氮等,属于劣五类水,如果尾水未经深度处理直接排入太湖,将会进一步增加已经处于富营养化状态的太湖水体中N、P等营养盐含量,使太湖富营养化程度进一步加剧。因此,为了有效削减排入太湖及周边水体中氮磷负荷,对太湖周边的污水处理厂尾水进行深度脱氮除磷就显得尤为重要。
[0004]目前针对尾水脱氮研究多采用超滤膜、反渗透膜分离或臭氧活性炭吸附等过滤处理,这些处理技术虽然效果较好,但对水处理量较大的污水处理厂来说很难得到广泛应用。磷的去除方法主要有生物法和化学沉淀法以及两者之间的联合工艺,生物法除磷效率不够稳定,无法满足日益严格的污水排放标准。化学沉淀法被广泛应用于各种污水处理工艺中,除磷效率相对较高,但是,该方法费用较高并且会产生大量无用的化学污泥,因此是一种慎重选择的处理技术。
[0005]作为典型的生态处理技术,人工湿地技术被广泛应用于污染水体的水质净化与恢复、面源污染控制、雨水处理与利用、污水处理等领域,具有投资及维护费用低、出水水质好、二次污染小等优点,可大幅削减进入受纳水体的氮磷等污染物负荷,在一定程度上保障受纳水体的水质需求,具有良好的环境、经济效益和社会效益。
[0006]人工湿地技术虽然可以有效地去除污水中总氮、总磷、悬浮固体、生物需氧量、重金属、病原微生物等,但是人工湿地脱氮除磷效果具有明显的不稳定性,究其原因主要有:
(I)人工湿地易受环境、特别是温度的影响,其处理效果呈现明显的季节波动性;(2)研究表明人工湿地对磷的去除作用主要是通过湿地基质的吸附作用得以去除,但是当基质吸附作用达到饱和或是水体中磷浓度相对较低时,吸附的磷会二次释放到水体中,从而导致人工湿地磷去除的不稳定性;(3)当污水中有机物含量较低时,当B0D/TN低于4时,可应用于反硝化微生物脱氮的有机碳源不足,会导致人工湿地对硝态氮去除能力的下降。
[0007]近年来,电化学作为污水处理的高级氧化技术,利用电子这一清洁的试剂实现污染物的去除,因其效率高且不受环境条件因子的限制,受到广泛关注。电化学法主要有内电解法与微电解法、电凝聚法、电气浮法、电氧化法等。电化学方法可以对多种污染物进行快速高效去除,在脱氮除磷方面也得到了广泛的研究和应用。
[0008]电化学方法的脱氮研究包括直接电解法、复三维电极生物膜法、电氧化法等,近年来许多研究学者对其进行了广泛的研究,李德生等利用催化电氧化技术对污水处理厂尾水进行脱氮处理,将电氧化技术与催化活性填料进行技术耦合,催化活性填料为活性炭和含有锰、铁、铜、银等金属固体颗粒组成,研究结果表明,催化电氧化技术在电流密度为32.67mA/cm2、进水 pH 值为 6.25 ?7.02、HRT 为 30min 时,总氮(TN)从 26.40mg/L 降至
11.9mg/L,NO3 -N 从 18.03mg/L 降至 4.90mg/L,去除率分别可达到 54.9%和 72.8% ;TN 脱除主要以硝氮(NO3-N)的去除为主。李素梅等利用复三维生物膜电极对去除城市污水处理厂二级出水中的硝态氮进行研究,结果表明:反应器中同时存在异养和自养两种反硝化细菌,在C/N = 1.5,HRT = 1hU = 60mA的运行条件下,硝态氮的去除率达85?90%,处理效果显著优于单纯生物膜处理法。
[0009]电解法除磷主要是综合了沉淀、絮凝和气浮等多种过程,以铁电极为例:在电解过程中,阳极释放的Fe2+和溶液中的Fe 3+会与磷酸盐发生反应生成难溶性铁盐。另外,部分Fe2+和Fe 3+在一定的pH范围内与溶液中的OH反应生成难溶性的铁的羟基化合物,这些含铁的羟基络合物能发生胶体絮凝,从而达到处理水质的作用。早在20世纪70年代,欧美国家就开始将电解法除磷技术应用于食品废水、石化废水,以及一些重金属废水的处理上。Bektas等研究了溶液初始含量、初始pH、电流密度、电解时间与除磷效率的关系。Irdemes等采用铁电极系统,研究了溶液PH对电絮凝除磷过程的影响,结果表明整个系统的pH控制在6?7较好;高敏等研究了原水pH、电解电流、极板间距对污水除磷的影响规律,结果表明,电解电流增大,TP的去除效果提高,极板间距太小时,会产生浓差极化现象;极板间距过大时,相应的能耗会增大。牺牲铁阳极法可以快速高效去除磷酸盐,但是由于在水体中仍然会有残留的铁离子,因此,如果可以进一步实现铁离子的有效去除,是电絮凝法除磷方法需要解决的一个问题。
[0010]生物质炭作为一种新型环保的污水处理新材料,由于其具有孔隙结构发达,比表面积大,吸附性能强等优点,被广泛应用于污水的处理研究中,生物质炭不仅对水体富营养化中氮磷等营养盐具有较高的吸附性,而且在生物地球化学循环、气候变化以及在环境系统中均发挥重要作用。在农田系统领域,国内外学者的研究结果表明生物质炭具有降低温室气体排放、提高“农业碳汇”、改善土壤性质、增加农田系统作物产量和控制污染等方面的作用,并且能改变土壤中微生物种群,改善植物的生长环境。生物质炭作为人工湿地的功能填料填充于人工湿地中,一方面可以作为吸附氮磷的功能填料,另一方面由于其孔隙结构发达的特点可作为生物膜的载体,因此,可以通过添加生物质炭强化人工湿地的脱氮除磷能力。
[0011]近年来研究表明负载铁改性后的生物质炭的吸附能力会大大高于未改性的生物质炭,李际会等利用FeCl3对生物质炭进行改性负载铁处理,制备成高效吸附硝酸盐和磷酸盐的改性生物质炭,结果表明在最优的改性比例条件下,生物质炭在硝态氮溶液中最适量为44g/L,去除率为75%;在磷溶液中的最适量为8g/L,去除率为99%。蒋旭涛通过对生物质炭进行负载铁盐改性,改性后的生物质炭表面会负载铁的氧化物和羟基氧化物,其对磷的结合能力很强,从而显著提高生物质炭对磷的吸附能力。但是以上的铁负载改性方法主要是利用高浓度的化学试剂进行改性,该过程中会产生大量的化学废液,不利于大规模的应用。
[0012]针对上述人工湿地脱氮除磷效果不稳定的问题,为了充分发挥电解技术与生物质炭技术的优势,本发明将将电解技术与活性填料生物质炭技术耦合连用,构建电解、改性和电-生物催化耦合反应区,作为人工湿地强化脱氮除磷的核心处理单元;同时利用光伏供电系统作为电解反应的能量来源,形成了以太阳能驱动的光一电一湿地三位一体的污水处理集成技术,这种新型的光电人工湿地强化脱氮除磷的方法,经济有效地实现了污水中氮磷等特征污染物的去除。

【发明内容】

[0013]本发明要解决的技术问题是提供一种光电人工湿地,以解决现有人工湿地在对污水的脱氮除磷处理方面效果不佳的问题。
[0014]本发明还要解决的技术问题是提供上述光电人工湿地在在污水脱氮除磷方面的应用。
[0015]为解决上述技术问题,本发明采用的技术方案如下:
[0016]—种光电人工湿地,它包括潜流式人工湿地和光伏供电系统;其中,潜流式人工湿地内含填料,填料上方种植有湿地植物,内部设有阴极板和阳极板,阴极板和阳极板间为电解、改性和电-生物催化耦合反应区;其中,阴极板和阳极板与光伏供电系统相连;其中,潜流式人工湿地中的填料包括碎石和生物质炭。
[0017]其中,所述的潜流式人工湿地的床体的长宽比为4?5:1 ;其中,所述的“长”为污水的流向。
[0018]其中,所述的湿地植物为耐寒的水生植物,优选西伯利亚鸢尾和圆币草;其中,湿地植物的种植密度为10?88株/m2。
[0019]其中,所述的阴极板和阳极板的材料为纯铁。
[0020]其中,阴极板和阳极板均垂直于湿地床体底面设置于潜流式人工湿地中,阴极板和阳极板之间的板间距为10?80cm,阴极板和阳极板在潜流式人工湿地床体中的有效高度为0.25?2.5mο
[0021]其中,阴极板和阳极板在潜流式人工湿地床体中的有效面积与处理湿地的面积为0.01 ?2:1。
[0022]其中,潜流式人工湿地(I)的填料中,所述的生物质炭由水生植物在隔绝空气条件下550?600°C加热2h制备得到;其中所述的水生植物为芦苇、菖蒲和西伯利亚鸢尾。
[0023]其中,潜流式人工湿地的填料中,生物质炭的体积占填料总体积的10?65%。
[0024]上述光电人工湿地在污水的脱氮除磷方面的应用也在本发明的保护范围之内。
[0025]当待处理污水流入光电人工湿地后,阴极板将对污水中的硝态氮进行电解还原,同时电解出的氢气可以供给自养反硝化脱氮微生物,而阳极板电解出的Fe3+离子将使磷酸盐絮凝沉淀。并且在电解、改性和电-生物催化耦合反应区中,填料中生物炭粒子将作为该电解系统的中的第三极而存在并与阴阳两极协同作用。生物炭粒子可以吸附电解过程中产生的多余Fe3+离子并对自身进行原位Fe 3+改性,在有效提高了自身吸附氮磷能力的同时,避免了电解过程中产生的过多Fe3+离子对水体的二次污染问题,有效保证了该方法的处理效果。与此同时,人工湿地中碎石填料、填料表面的生物膜和植物根系等因素,通过沉降、过滤、吸附、分解和微生物与植物的吸收代谢等方式与电解系统共同作用,强化了人工湿地的脱氮除磷能力。另外,本发明采用光伏供电系统直接将太阳的光能量转化为电解反应所需要的电能量,有效地解决了电解强化人工湿地运行过程中的能耗问题。
[0026]有益效果:
[0027]与现有技术相比,本发明具有如下优势:
[0028](I)通过构建新型电解、改性和电-生物催化耦合反应区为核心的强化人工湿地反应体系实现了污水中高浓度NO3 -N/低浓度PO43 -P的同步高效去除,并将电化学技术与人工湿地技术耦合联用,显著地提高了人工湿地的脱氮除磷效果;
[0029](2)将电化学技术与改性生物
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1