催化反应器的制作方法

文档序号:4975354阅读:211来源:国知局
专利名称:催化反应器的制作方法
技术领域
本发明涉及适合用于在升高的压力下进行气相反应的催化反应器,特别但不是专门用于进行吸热反应,并涉及使用催化反应器的化学过程。
应用支持在金属衬底上的催化材料是众所周知的技术。例如英国专利GB 1490977描述一种催化剂,它包括含铝的铁素体合金衬底,涂覆一层耐熔的氧化物,如氧化铝、二氧化钛或氧化锆,接着涂覆催化的铂系金属。如在GB 1 531 134和GB 1 546 097中描述的那样,催化剂本体可以包括这种材料的基本平的片和有波纹的片,它们交替排列以便限定通过本体的通道,或者几个这样的片排列成一叠层,或者两个这样的片缠绕在一起形成盘管。在这些例子中,平片和波纹片两者都有叠加在它们上面的小尺度的波纹以便有助于涂层的形成。描述的这种催化剂本体适合用于处理车辆的排放气体。
根据本发明提供一种催化反应器,它包括多个金属片,这些金属片布置成限定在相邻片之间的第一气体流动通道,限定接近第一气体流动通道的第二气体流动通道的装置,该装置这样布置以便保证在第一和第二气体流动通道中的气体之间有良好的热接触,在每个流动通道内的至少某些表面上的催化剂材料,和将气体混合物供应给气体流动通道的头部,头部使得不同的气体混合物可以供应给第一和第二气体流动通道。
可由窄的管限定第二气体流动通道,例如在第一气体流动通道内横截于这些通道内的流动方向延伸的管。另一种是,也可在金属片之间限定第二气体流动通道,在连续的这样的各片之间交替地限定第一和第二气体流动通道。
在每个气体流动通道内通过夹入波纹状的金属箔提高相邻流动通道中气体之间的良好热接触。这种箔也可以作为催化剂材料的载体使用。可将相邻的金属片压在一起,或者可将它们例如通过扩散结合而结合在一起。为了保证所需的良好热接触,第一和第二气体流动通道两者在横截于气体流动方向的至少一个方向上最好有小于5mm的宽度。更优选地第一和第二气体流动通道两者在至少一个这样的方向上有小于2mm的宽度。
例如各片可以是同心管,因此气体流动通道是环形通道,每个环形通道定位有总体上呈圆筒形的波纹材料片,波纹材料片的表面用催化剂材料涂覆。在这种情况下在管的每个端部将装设头部以便给环形通道供应气体混合物,与相邻通道连通的各头部是分离的。为了保证波纹片和管之间良好的传热,希望每根管围绕邻近的波纹片紧密配装,和优选地是用收缩配装方法装配。因此最好每根管在滑过组件的内部件之前先加热,而内部件是在环境温度;另一种是内部件在插入到管中之前先冷却,而管子是在环境温度。波纹片(它也可以有小尺度的波纹)不是结构部件,因此它们可以是很薄的金属箔。而管子可以有足够的壁厚以便承受压力差,所以不同的气体混合物可以处于不同的压力。
在优选的构造方法中,如上述那样开始装配管和波纹片,留下敞开的端部,接着施加催化剂材料一个或多个的涂层;然后将头部或分配器固定到反应器的端部。
另一种是,各片可以是平的,并具有横过它们的表面机加工的槽以便限定气体流动通道。因此反应器可以包括这样平的板的叠层,在相邻板中的槽跟随不同的路径。例如槽本身可以是20mm宽,每个槽容纳涂覆催化剂材料的波纹片或箔。为了保证气体流动通道是气密的,希望各板结合在一起。
在使用催化反应器时,供应给每个环形通道的气体混合物与供应给相邻通道的气体混合物不同,那么相应的化学反应也不同。优选地一个反应是吸热的,而另一个反应是放热的。在那种情况下热量通过分隔相邻通道的管或片的壁从放热反应传到吸热反应。
最好,不管是管状的还是平的,各片本身也用合适的催化剂材料涂覆。
这种反应器特别合适于进行甲烷/蒸汽转化(它是吸热反应,生成氢和一氧化碳),而交替的通道可以含有甲烷/空气混合物,从而使放热氧化反应为吸热转化反应提供必需的热量。对氧化反应可以使用几种不同的催化剂,例如在陶瓷支承件上的钯或铂;例如在镧稳定的氧化铝支承件上的铂,或在氧化锆上的钯。氧化反应优选的催化剂是稳定的氧化铝上的铂。对转化反应也可以使用几种不同的催化剂,例如镍、铂、钯、钌或铑,它们可在陶瓷涂层上使用;转化反应优选的催化剂是氧化铝上的铑或铂/铑。氧化反应基本上可在大气压力下进行,而转化反应优选地是在升高的压力下进行,该压力例如高至2Mpa(20大气压),更普通的是300Kpa或500Kpa。
将能理解制成反应器的材料在使用中将经受严重腐蚀性的气氛,例如温度可能高至900℃,尽管更普通的是在750℃左右。反应器可由金属例如含铝的铁素体钢制成,特别是称为Fecralloy(商标)的这类钢,它是含高至20%的铬、0.5-12%铝、和0.1-3%钇的铁。例如它可以包括含15%铬、4%铝、和0.3%钇的铁。当在空气中加热这种金属时它形成氧化铝的附着的氧化物涂层,该涂层防止该合金进一步氧化。在将这种金属用作催化剂衬底,和用结合有催化剂材料的陶瓷层涂覆这种金属时,相信金属上的氧化铝氧化物层会与氧化物涂层接合,从而保证催化剂材料附着到金属衬底。
现在将只通过例子和参考附图进一步更具体地描述本发明,其中

图1是催化反应器的纵向剖面图;图2是沿图1的2-2线取的反应器的横剖面图;图3是用图1和2的反应器可以进行的化学过程的流程图;图4是层叠的板形成另一个代替的催化反应器的剖面图;图5是形成另一个代替的催化反应器模块的三张片材的分解透视图;图6是另一个代替的催化反应器的透视图;图7是用于形成另一个代替的催化反应器的板的平面图;图8是用于形成另一个代替的催化反应器的板的平面图;以及图9a和9b是用于形成另一个代替的催化反应器的板的平面图。
参考图1,催化反应器10包括Fecralloy钢制的几个套装的同心压力管12,每个壁厚为0.5mm(在图中仅表示4个,但实际上管12的数目可以比方说是15或16)。最内部的管12包括电加热元件14。如在图2中所示,在管12之间的环形通道15定位有波纹状Fecralloy钢的箔16,它的波纹一般是2.0mm高(峰到峰)有2.0mm的间距。
如GB 1546097号中描述的那样,将0.05mm厚的Fecralloy钢的平条通过两组连续的波纹辊子,可以制成波纹箔16。第一辊子形成微型的波纹,这些波纹与条的纵向轴线成锐角跨过条延伸;例如微型波纹可以有高度0.1mm和间距0.1mm。接着该条通过第二组波纹辊子,该辊子产生尺寸较大的波纹而不会损伤微型波纹。较大的波纹与纵向轴线成相同的锐角跨过条延伸,如上所述一般有2.0mm高和2.0mm的间距。
装配反应器10是通过以下步骤进行,将波纹条切割成与第一环形通道的周边相等的长度,并将它放到最内部的管12上;将下一个管紧配装到波纹条上,在滑过波纹条之前先将该管加热到250℃,所以它将紧紧地收缩在波纹条上。一旦它已经冷却就重复这个程序。切割波纹条的长度等于下一个环形通道的周边,并将该条放到外管12上;在滑过波纹条之前将下一个管加热到250℃,所以管将紧紧地收缩在条上。每根条的宽度可以等于环形通道的轴向长度,或者另一种和优选地是可将许多较窄的条并排地放置以便填充所需的轴向长度。为了制造简单起见,用相同的辊子制成所有的波纹条,所以所有的波纹都有相同的取向。因此任何一个波纹在一些位置遇到该条边缘,这些位置的间距(沿着条的长度)最好是等于第一环形通道的周长。因此当装配到反应器10内时每个这样的波纹限定一个螺旋形的路径。
当已经装配好所有的管12和波纹箔16时,用氧化锆溶胶涂覆第1、第3、第5等环形通道15a的表面,和用氧化铝溶胶涂覆第2、第4、第6等环形通道15b的表面。这可以通过例如用蜡暂时堵塞一组环形通道的端部,并将组件浸没到合适的溶胶中进行。然后慢慢干燥该组件,接着烧结,例如在空气炉中,经过4小时将温度升到例如1100℃然后保持该组件于那个温度再经过4小时。在冷却该涂覆的组件之后,接着例如以适宜的金属的盐的形式引入催化剂材料在这个例子中将钯引入到通道15a中氧化锆涂层上,和将铑引入到通道15b中氧化铝涂层上。通过热处理使盐分解(或还原)然后生成催化剂金属。
然后将环形端帽18激光焊接到每个环形通道15的端部上,每个端帽18与入口或出口导管20连通。所得的反应器10的外直径是50mm,和它的长度是500mm。
反应器10特别适合进行蒸汽/甲烷的转化反应,也就是这个反应
这个反应是吸热反应,被通道15b中的铑催化剂催化。使这个反应进行所需的热量可由甲烷的燃烧提供,也就是说
它是放热反应,由通道15a中的钯催化剂催化。由这个燃烧反应产生的热量通过管12的壁传导到相邻的通道15b中。因此在使用中,反应器10首先用电加热元件14加热。在接近大气压下将甲烷和空气的混合物供应给所有的15a通道,在那里进行催化燃烧。将蒸汽和甲烷混合物供应给另一组通道15b,在那里产生蒸汽/甲烷转化反应;最好蒸汽和甲烷混合物是在升高的压力下,因为这提高质量流速从而能处理较大量的甲烷气。例如这些15b通道可以处于1Mpa压力下。
然后可以用蒸汽/甲烷转化产生的气体混合物进行费-托(Fischer-Tropsch)合成,也就是说一氧化碳+氢→烷烃或烯烃(如C10)+水它是放热反应,在升高的温度如320℃和升高的压力(如1.8-2.2Mpa)下,在催化剂如铁、钴或熔融的磁铁矿存在,用钾作助催化剂时发生反应。反应生成的有机化合物的精确特性取决于温度、压力、和催化剂、以及一氧化碳和氢的比例。可以使用由这个合成反应生成的热量,提供蒸汽/甲烷转化反应所需的至少部分热量,例如可以使用传热流体如氦从发生费-托合成的反应器传出热量,使用该热量来预热至少一个供应给反应器10的气流。
现在参考图3,以流程图表示整个化学过程。大多数流体都处于升高的压力10巴(1Mpa)。进给气24主要包括甲烷,有小百分比含量(如10%)的乙烷和丙烷,压力为10巴。将气体通过热交换器25使它的温度约为400℃,然后通过流体涡流混合器26将它供给第一催化反应器28;在混合器26中进给气与也是温度约为400℃和压力为10巴的蒸汽流混合,这些气流通过切向入口进入到混合器26和跟随螺旋的路径到轴向出口,从而使它们彻底混合。反应器28的第一部分是在400℃下具有镍甲烷化催化剂的预转化器29,其中将高级链烷烃与蒸汽反应生成甲烷(和一氧化碳)。反应器28的第二部分是具有铂/铑催化剂的转化器30,在那里甲烷和蒸汽反应生成一氧化碳和氢。这个反应可以在800℃下进行,由甲烷在钯(或铂)催化剂上燃烧提供热量。由转化器30来的灼热气体然后通过热交换器31急冷,以提供供应到涡流混合器26的热蒸汽,接着通过热交换器25,在那里它们把热量传给进给气。
接着将一氧化碳和氢气流供给第三反应器32,在那里一氧化碳和氢反应,进行费-托合成生成烷烃或类似的化合物。这个反应是放热反应,优选地是在约350℃下发生,用该热量预热供给热交换器31的蒸汽,使用热交换流体如氦,氦在反应器32和蒸汽发生器33中的热交换通道之间循环。在这个合成中气体的体积减小,所以这个过程也在升高的压力10巴下进行。然后将所得的气体通入到冷凝器34中,在那里它们首先在25℃与水热交换。高级链烷烃(如C5或以上)冷凝成液体,水也是一样,将这个液体混合物送到重力分离器35;接着可以取出分离的高级链烷烃作为所需的产品,而水通过热交换器33和31回到混合器26。任何低级链烷烃或甲烷和剩下的氢气通过冷凝器34,接着供给到冷却的冷凝器36,在那里气体和蒸汽被冷却到约5℃。将剩余的气体,主要包括氢、二氧化碳、甲烷和乙烷,通过释放压力的通气阀37到放空燃烧装置38。将冷凝的蒸汽,主要包括丙烷、丁烷和水,送到重力分离器39,从那里水与从分离器35来的再循环的水汇合,而链烷烃再循环到费-托合成反应器32的入口。
在第一冷凝器34中蒸汽降低到的温度决定冷凝的并且也是作为产品排出的链烷烃的分子量。因此通过改变供给冷凝器34的水温可以修改产品的特征。上面的反应流程依赖于蒸汽/甲烷的比例,该比例接近于转化器30化学计量的需要,铑催化剂是特别耐结焦;这有如下好处,在转化器30中生成数量可以忽略不计的二氧化碳,从而不需要进一步处理气体(应用相反的水煤气变换反应)以将二氧化碳再转换成一氧化碳。将还能理解如果进给气只包括甲烷,那么预转化器29可以省略。
当应用这种形式时,过程的最终结果是将甲烷转换成分子量较大的烃,它们一般在环境温度和压力下呈液态。可以在油或气井使用该过程将天然气转换成容易运输的液态烃。
将能理解可以应用图1和2的反应器10进行各种化学过程,和在每个通道15内的催化剂必须适合相应的过程。可以布置气体平行或顺序流经反应器的通道15。在相邻通道15内两种气体混合物的流动可以是逆流或并流,和在相邻通道15内波纹(因此螺旋流动)的方向可以是平行或倾斜。在某些情况下,可以应用螺旋流动起动反应的液态和气态产品之间的离心分离。
还将能理解,反应器10可以有许多方式与上述的不同而仍然保留在本发明的范畴内。例如,同心管12的数目和通道15的径向宽度可以与描述的不同,通道可以有不同的长度,例如100mm。电加热器14可由其他的热源替换,如感应加热器。
现在参考图4,另一种反应器40包括一板42的叠层,每个板是Fecralloy钢,在这种情况下该板是200mm的方形和3mm厚(在图中以剖面形式仅表示两块板的一部分)。宽8mm和深2.5mm的槽44平行于一侧延伸跨过每块板42的整个宽度,由宽度3mm的槽脊45分隔,槽44是机械加工的。Fecralloy钢的载体箔46用含有催化剂材料的陶瓷涂层涂覆50μm厚,和有波纹2.5mm高,将其放入到每个这样的槽44中。装配这样的带有催化剂箔46的板42的叠层,在顺序的板42中槽44的取向相差90°,并用Fecralloy钢的平顶板覆盖;然后在惰性气氛中将该叠层加热到温度600℃到1200℃范围内,把该叠层扩散结合在一起。或者在这个阶段或者其后可以在该板叠层上装设头部。这样,由槽44限定气体流动通道,一组通道譬如说在叠层中从右边延伸到左边,而另一组通道(在另一些板42中)从叠层的前面延伸到后面。
将能理解沉积在气体流动通道中波纹箔46上的陶瓷类型在叠层中连续的各板42中可以是不同的,因此,催化剂材料也可以不同。例如(用图1和2的反应器10)在一个气体流动通道中陶瓷可以包括氧化铝,而其它气体流动通道的陶瓷可以包括氧化锆。
最好是,在扩散结合之后,该板叠层42保持在约900℃并让氧化气流通过所有限定气体流动通道的槽44。这促进在通道的表面上生成富含氧化铝的氧化物层。在这个氧化步骤之后,将该叠层冷却到室温,将或者氧化铝或者氧化锆溶胶的水悬浮液泵送通过槽44,然后排干(这样在通道的壁上留下溶胶的涂层);通过改变溶胶悬浮液的pH值或浓度可以调节溶胶悬浮液的粘度,而除去多余的溶胶可以依靠在重力下排干,或可以泵送来进行,这取决于粘度。接着在氧化的气氛中在温度例如接近800℃下烧结该叠层,这样将氧化铝溶胶颗粒烧结在Fecralloy钢表面上的氧化物层上,从而形成陶瓷的催化剂载体层。这层希望的厚度是在10-50μm范围,如果需要可以重复用合适的溶胶涂覆然后烧结的步骤,以便达到所需的厚度。最后泵送合适的催化剂金属盐的溶液通过通道44,接着在还原(或氧化)的气氛中干燥和热处理该叠层,以便产生在气体流动通道44内催化剂金属分散在陶瓷载体层上的所需形式。
与反应器10一样,由板42构成的反应器将适合进行蒸汽/甲烷的转化,例如使用铑催化剂。可用甲烷燃烧提供使这个反应进行所需的热量,燃烧可由钯催化剂催化。因为构成叠层的板42是结合在一起,所以气体流动通道是气密的(除了在每端用头部连通之外),和在另外的气体流动通道中的压力也可以不同,如有关反应器10叙述的那样。
现在参考图5,它表示Fecralloy钢的三张片材的分解透视图这些片材在装配时构成另一个代替的催化反应器模块。每张片材50、54和56基本上为矩形,30mm乘100mm,片材50和56厚度是0.3mm,片材54的厚度约为50μm,每个都是液压成形。将第一片材50加压形成矩形凹槽51,深为1mm,被平的周边凸缘52包围,在凸缘中有入口和出口凹槽53。中间片材54有中心矩形部分,在该部分中是平行的波纹55,波纹55的长度略短于凹槽51的高度,波纹被平的周边凸缘52包围;波纹55在片材54每一侧上的凸缘52的平面上突出1mm。第3张片材56构成矩形凹槽57,深为1mm,被平的周边凸缘52包围,在凸缘中有入口和出口凹槽58。在波纹55的表面上涂有结合了催化剂材料的陶瓷材料薄层。在片材54一侧的波纹55上涂覆的陶瓷材料和催化剂材料可以不同于在片材54相反侧的波纹55上涂覆的陶瓷材料和催化剂材料。
然后装配片材50、54和56,使波纹55突出到凹槽51和57中,3个外周凸缘52通过焊接、钎焊、或扩散结合连接在一起。接着可以将不同的气体混合物供应到中心片材54相反两侧上限定的气体流动通道,通过凹槽53供给一种气体混合物,通过凹槽58供给另一种。可以装配许多这样的三片模块,并对不同的气体混合物装设各头部。
现在参考图6,它表示包括一Fecralloy钢矩形板62的叠层的另一种催化反应器60的透视图,每块板100mm长、50mm宽、0.1mm厚,由也是Fecralloy钢的波纹箔64分隔,波纹的高度(也是板62之间的间距)是4mm。箔64限定互相对齐的几个横向的缝。在该叠层的每一侧是侧板66,许多窄的管68延伸通过钻在侧板66上的孔并通过箔64中对齐的缝,沿着每个波纹箔64的长度有24个这样的管68,管68间距4mm。每根管68是Fecralloy钢,内直径2mm,壁厚0.1mm。管68是扩散结合(或另一种是钎焊)到侧板66。
在管68的内表面涂覆陶瓷材料和在升高压力下发生的反应用的催化剂,如甲烷转化反应,而由波纹箔64和板62限定的通道表面涂覆陶瓷材料和不同反应用的催化剂,如与在前面描述的反应器中一样的甲烷的燃烧反应。将头部(未表示)附连到侧板66以便供应气体混合物通过管68,和将头部(未表示)附连到该叠层的端部以便供应气体混合物通过波纹箔64和板62限定的通道。将能理解在两组气体流动通道中的气体之间有良好的热接触。
将能理解这样窄的气体流动通道的优点是,扩散路径的长度短,和因为边界层的影响较小使热和质量的传递速率增加。化学反应要求反应的物质扩散以与催化剂表面接触,因此化学反应的速率提高,和在放热反应与吸热反应之间的传热速率也提高。因此这样的催化反应器可以提供高的功率密度。
如上所述,陶瓷涂层可以从溶胶形式的材料沉积而成,也就是说分散包含颗粒的颗粒尺寸为1nm到1μm。对具体的溶胶,如氧化铝溶胶,制备溶胶的方式确定颗粒的尺寸。某些氧化铝溶胶有各个分离的颗粒作为主要的溶胶颗粒(所谓不团聚的),而某些氧化铝溶胶有更小颗粒团聚成的溶胶颗粒。一般来说,团聚类型的溶胶比不团聚的溶胶将产生更加多孔的陶瓷涂层。因此通过选择所用溶胶的类型,或通过混合不同数量的不同类型溶胶,可以控制陶瓷涂层的孔隙率。通过调节陶瓷的孔隙率和催化剂材料的装载,可以控制陶瓷涂层的催化剂活性。在制作进行强放热反应的催化反应器时,可能要求沿着流动路径调节催化剂的活性,例如开始时提供的催化剂活性较低,沿着流动路径进一步提高催化剂的活性,以便防止热点形成。例如在进行费-托合成的反应器中这可能是合适的方法。在使用氧化锆溶胶构成氧化锆陶瓷涂层时要应用相类似的考虑;此外它可能要求包含阳离子如钇,以便形成稳定的氧化锆,特别是在操作时可能达到高温的陶瓷涂层处,因为稳定的氧化锆提供稳定的表面区域。
现在再参考图4,将能理解气体流动通道44可以沿着它们的长度改变宽度和深度,以便改变流体流动条件和传热或传质的系数,以便控制在反应器40内不同地方的化学反应。这特别可以应用到费-托合成的反应器,在该反应器中气体体积减小,例如通过适当地收缩通道44使在反应进行时可以维持气体的速度。还有,波纹箔46的节距或图案沿着反应通道44可以改变,以便调节催化剂的活性,从而对反应器40内不同点的温度或反应速率提供控制。例如还可以使波纹箔46成形有穿孔,以便促进在通道44内流体的混合。
现在参考图7,另一种反应器70包括一Fecralloy钢板71的叠层,每块板基本上是矩形,125mm长和82mm宽,2mm厚。沿着每块板71的中心部分机械加工成7个平行的矩形槽72,每个深0.75mm,在每一端有相同深度的头部槽74,头部槽74延伸到板71的一侧边缘。在图示的板71的顶表面上,在底端的头部槽74延伸到板71的右手边缘,而在顶端的头部槽延伸到板71的左手边缘。在板71的相反表面上的槽是相同的,但头部(用虚线表示)延伸到板71的相反侧。连续的板71使它们的头部槽74是镜象布置,以便相邻的槽74延伸到该叠层的相同侧。在每个矩形槽72内是三个波纹Fecralloy箔76a、b和c,每个50μm厚并且其波纹1.8mm高,但它们波纹的节距或波长不同。为了保证在装配时板71的精确对齐,在每端设置孔75,使定位销位于孔中。在扩散结合时将板71和箔76的叠层装配和压缩,从而将箔压缩成1.5 mm高。然后将气体流动压力通风装置78钎焊到叠层的每一角,每个压力通风装置78与一组头部槽74连通。
现在参考图8,另一种反应器80有些类似于反应器70,包括一Fecralloy钢板81的叠层,每块板基本是矩形,125mm长和90mm宽以及2mm厚。沿着每块板81的中心部分,机械加工成7个平行的矩形槽82,每个宽4mm和深0.75mm,间距5mm,在每一端有相同深度的头部槽84,头部槽84延伸到靠近板81一侧边缘的头部开孔83。在图中表示的板81的顶表面上,因此气体流动是从底部左边的开孔83到顶部右边的开孔83。在板81相反表面上的槽是相同的,但头部(用虚线表示)延伸到靠近板81相反侧的头部开孔87。连续的各板81使它们的头部槽84是镜象布置的,所以相邻的槽84与相同的各对头部开孔83或87连通。在每个矩形槽82内有3个波纹状的Fecralloy箔86a、b和c,每个50μm厚并且其波纹1.8mm高,但其波纹的节矩或波长不同。为了保证在装配时板81的精确对齐,在每一端设置孔85,定位销位于其中。在扩散结合时将该板叠层81和箔86装配和压缩,从而箔被压缩到1.5mm高。接着将气体流动压力通风装置连接到叠层顶部的开孔83和87,这些开孔在叠层的底部是封闭的。反应器80与反应器70不同之处不仅在于具有由开孔83和87(代替压力通风装置78)限定的成整体的头部,而且在矩形槽82之间的每个槽脊中限定穿过板81的7个缝88,每个缝82是1mm宽和6mm长。在叠层装配之后,这些缝88为第3气流例如预热的气流提供流动路径。
参考图9a和9b,另一种反应器90包括一由机架93间隔开的波纹箔92的叠层。每个机架(如图9a中所示)包括Fecralloy钢的基本方形的板93,60mm见方和1mm厚,它限定4个矩形开孔94,每个是50mm乘10mm。在板93的每个端部有深0.5mm的头部槽95,它通过槽口与每个开孔94连通。靠近每块板93的角处是头部开孔96。有两种类型的机架,在叠层中交替使用它们。在一种类型中(如图示),头部槽95与板93的底部左边和顶部右边的开孔96连通(如图示),而另一种类型中(未表示),头部槽95与板93的顶部左边和底部右边的开孔96连通。每个箔92(表示在图9b中)也是60mm见方和0.5mm厚。靠近每个角限定头部开孔96。4个矩形区域98(对应于开孔94)是在箔平面上下幅度为0.5mm的波纹。在实践中每个这样的区域98通常是相同图案的波纹,但图示了4个不同的图案区域98a有沿着流动通道纵向延伸的波纹;区域98b有在流动方向的横向延伸的波纹;区域98c有很多凹坑;而区域98d有两种波纹,有纵向延伸的还有凹坑。反应器90包括由交替使用两种类型的机架93间隔开的箔92的叠层,叠层的底部包括下面接着机架93的空白方形板(未表示),叠层的顶部包括被方形板(未表示)盖住的机架93,它限定对应于开孔96的开孔。在扩散结合时装配和压缩该叠层从而构成整体的反应器。
将能理解应用本发明的原理可以设计许多其他的反应器。例如,可以用例如直径为0.1mm的小陶瓷球的气体可渗透的填料填充在金属箔的波纹中,将催化剂装设在这种填料的形式的气体流动通道中。在这种情况下金属箔为气体提供主要的传热表面,而化学反应在催化剂小球上发生。如果催化剂活性降低,这样就能取出和更换催化剂。
权利要求
1.一种根据本发明提供的催化反应器,其包括多个金属片材,这些金属片材布置成在相邻片材之间限定第一气体流动通道,限定接近第一气体流动通道的第二气体流动通道的装置,该装置这样布置以便保证在第一和第二气体流动通道中的气体之间有良好的热接触,在每个流动通道内的至少某些表面上的催化剂材料,以及将气体混合物供给气体流动通道的头部,头部使得不同的气体混合物可以供给到第一和第二气体流动通道。
2.如权利要求1所述的催化反应器,其特征在于,通过在气体流动通道中夹入波纹状的金属箔提高相邻气体流动通道中的气体之间的良好热接触。
3.如权利要求1或2所述的催化反应器,其特征在于,第一和第二气体流动通道两者在横截于气体流动方向的至少一个方向上都有小于5mm的宽度。
4.如前述权利要求中任一项所述的催化反应器,其特征在于,至少某些金属片材限定许多窄槽以便提供气体流动通道,在槽之间的该片材部分与相邻金属片材接触,从而提供热接触。
5.如权利要求2所述的催化反应器,其特征在于,各片材是同心管,因此气体流动通道是环形通道,每个环形通道定位有总体上呈圆筒形的波纹状材料片材,并且其中用催化剂材料涂覆波纹状材料片材的表面。
6.如权利要求5所述的催化反应器,其特征在于,每根管围绕相邻的波纹状片材紧密配装。
7.如前述权利要求中任一项所述的催化反应器,其特征在于,各片材通过扩散结合而结合在一起。
8.一种使用如前述权利要求中任一项所述的反应器在气体之间进行化学反应的方法,其中供给第一气体流动通道的气体混合物不同于供给第二气体流动通道的气体混合物,每种气体混合物都经历反应,并且一个反应是吸热的,而另一个反应是放热的,因此在相邻通道之间传热。
9.如权利要求8所述的方法,其特征在于,吸热反应是甲烷/蒸汽转化。
10.如权利要求9所述的方法,其特征在于,转化反应在200kPa和2MPa之间的高压下进行。
全文摘要
一种催化反应器(10)包括许多流体不可渗透的元件(管或板)(12),在它们之间限定流动通道(15)。紧配合在每个流动通道(15)内的是波纹材料的片(16),它的表面用催化剂材料涂覆。在反应器(10)的每一端是将气体混合物供给流动通道(15)的头部(18),各头部与被分离的相邻通道连通。反应器(10)能将不同的气体混合物供给相邻的通道(15),各气体混合物可在不同压力下,和相应的化学反应也是不同的。其中一个反应是吸热的而另一个反应是放热的,通过分离相邻通道(15)的管(12)的壁从放热反应向吸热反应传热。在紧凑的设备中可以使用反应器(10)进行蒸汽/甲烷转化,从催化甲烷燃烧获得所需的热量,也可从费-托合成取得热量。
文档编号B01J23/46GK1416361SQ01806368
公开日2003年5月7日 申请日期2001年1月10日 优先权日2000年1月11日
发明者M·J·波维, J·W·斯泰尔曼德, I·F·齐默曼, J·A·毛德 申请人:阿山特斯有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1