用于过滤熔融铝的低膨胀耐腐蚀性多孔陶瓷过滤介质的制作方法

文档序号:5027711阅读:332来源:国知局

专利名称::用于过滤熔融铝的低膨胀耐腐蚀性多孔陶瓷过滤介质的制作方法用于过滤熔融铝的低膨胀耐腐蚀性多孔陶瓷过滤介质相关专利申请的交叉引用本专利申请要求2006年3月31日提交的美国临时专利申请No.60/788,391的优先权。
背景技术
:生产用于制备高质量铝制品的铝锭和铝坯的要求是,熔融铝相对不含夹杂物,如不溶性固态杂质或不混溶液态杂质。这是为了确保这些锭料或坯料在下游制备后能满足这样的高质量产品的严格要求,所述产品例如为刚性和挠性包装材料、航空航天产品(挤压制品、片材、板材、锻件)、平版印刷产品、汽车冷凝管和亮条(brighttrim)。在生产熔融铝的过程中,在整个还原、保持、合金化和浇注过程中都会产生不溶性杂质或夹杂物。在最初的电解还原过程中,会携带未溶解的氧化铝、铝碳化物类、来自电解槽的氟化铝钠、以及Y-氧化铝表皮作为杂质和夹杂物。在炉内保持和合金化阶段,会产生铝酸镁尖晶石、氧化镁、y-氧化铝表皮和炉内耐火材料作为杂质和夹杂物。在浇注过程中的金属转移期间,会产生氯盐、硼化钛簇、被侵蚀的耐火材料、以及Y-氧化铝表皮作为杂质和夹杂物。期望在熔融铝凝固成为锭料或坯料之前的最后工序中通过过滤除去这些夹杂物。多年来,工业上通过使用多种方法来实现这一要求,所述方法包括如以下文献中所例举的床式过滤法和多孔陶瓷过滤法,所述文献为B歷dyke,K.J.和Hess,P.D.,"FilteringandFluxingforAluminumAlloys",TransactionsofAIME,第230巻,1964年12月,第1,553-1,556页;美国专利3,947,363,1976年3月30日授权,题目为"CeramicFoam",发明人为MichaelJ.Pryor禾口ThomasJ.Gray;以及美国专利4,343,704,1982年8月10日授权,题冃为"CeramicFoamFilter",发明人为JerryW.Brockmeyer。在二十世纪七十年代早期开发了一种在铸铝用壳体中使用的开孔式多孔陶瓷过滤介质(open-poreceramicfoamfilter),并且在1974年首次商业上应用了该技术,从而制得用于制成板材和片材的轧压锭料。多孔陶瓷过滤介质是用于单一一次浇注的一次性或可置换型整体式过滤介质。过滤介质的孔径为4至28个孔/厘米(10至70个孔/线性英寸),这对应于直径为约0.036cm至0.26cm的孔隙。多孔陶瓷过滤介质通常制成尺寸为22.86cmx22.86cmx5.08cm(9英寸x9英寸x2英寸)至66.04cmx66.04cmx5.08cm(26英寸><26英寸><2英寸)的正方形,并且边缘倾斜17。以如图1所示置于耐火滤罩中。在倾斜边缘上固定纤维纸衬垫以提供侧压力负荷,从而将过滤介质固定在滤罩中的合适位置处并防止金属绕过过滤介质的边缘周围。纤维衬垫材料的厚度通常为约0.317cm至0.476cm(1/8英寸至3/16英寸),并且通常由硅酸盐纤维构成。有时将蛭石加入衬垫材料中,蛭石在加热时会膨胀,从而使衬垫压力增加。针对熔融铝而言,该过滤介质通常的使用时间为30分钟至120分钟。在二十世纪八十年代,多孔陶瓷过滤技术在巿场上得到快速且广泛的接受,从而大范围高质量地制造铝制品,所述铝制品包括刚性包装材料、平版印刷板、航空航天产品(片材、板材、锻件、挤压制品)、亮饰条、冷凝管、箔、建筑用挤压制品、铸造合金、以及导电电缆和电线。由于下述原因这一技术随后在市场上被快速接受并发展到所有复杂类型和水平的铸铝用壳体中,所述原因为易于使用和易于为操作者接受;操作上的灵活性;每次浇注后均能排空;操作成本变化较小;较低资金的安装成本;可有效地除去夹杂物;需要较小的底座,这等于使安装需要的占地空间最小化。最早市售的多孔陶瓷过滤介质基于铬-氧化铝晶粒材料、正磷酸铝粘结剂和用于增强浆料流变性的膨润土/高岭土添加剂。铬-氧化铝晶粒相对较贵,并且由于涉及潜在的六价铬(其是已知的致癌物质),因此会带来潜在的处置问题。铬-氧化铝配制物随后被"全氧化铝"配制物所代替,所述"全氧化铝"配制物在仍然使用铬-氧化铝过滤介质的正磷酸铝粘结剂体系的同时,加入硅铝酸盐纤维和矿质胶体、粘土添加剂。这种"全氧化铝"过滤介质配制物随后在世界范围内广泛使用,并且在超过25年的时间里成为在铸铝用壳体中使用的多孔陶瓷过滤介质的"工业标准"。尽管广泛使用磷酸铝粘结的氧化铝多孔过滤介质,但是这种过滤介质配制物有几个明显的缺点。在使用过程中,由于磷酸铝粘结物受到侵蚀,因此磷酸铝过滤介质具有较低的抗热震性,具有容易发生侧压力破坏乃至丧失强度的趋势;磷酸铝过滤介质对过滤介质结构所受到的化学侵蚀作用和腐蚀作用的耐受性较低。此外,使用时过滤介质可生成磷化氢气体,这使得处置起来较为复杂。对任何熟悉用于容纳熔融铝和铝合金的耐火材料的人而言,在多孔陶瓷过滤介质中使用氧化铝晶粒似乎是显而易见的选择。氧化铝在熔融铝和铝的常规合金(包括含镁的铝合金)中是相对化学惰性的。氧化铝还被广泛地用作炉(用于熔融并保持熔融的铝合金)内使用的耐火材料中的晶粒材料。此外,在研制出一次性可置换型多孔陶瓷过滤介质之前,人们使用板状氧化铝床式过滤介质来过滤熔融铝。床式过滤介质是装有未粘结的板状氧化铝晶粒的大型受热容器,其用于在若干天、甚至若干星期的时间内反复进行浇注。熔融金属长时间暴露于耐火材料以及如床式过滤介质中的未粘结的聚集材料之中使得需要使用诸如氧化铝之类的化学惰性的晶粒材料。然而,氧化铝的线性热膨胀系数相对较高(8.0xlO—V"C),并且由于热梯度(由受热不均匀引起)和高的热膨胀系数的联合作用而产生的高的热应力,使得氧化铝整体成形体(如多孔陶瓷过滤介质)具有较差的抗热震性。在预热和初始与熔融金属接触的过程中,这种多孔陶瓷过滤材料可发生热震破裂或碎裂,从而导致过滤材料脱落并进入锭料或坯料中形成夹杂物。此外,当多孔氧化铝过滤介质在预热和使用过程中被限制在滤罩中时,由于过滤介质具有高的热膨胀率可导致产生高的侧压应力,从而导致过滤介质被压坏。在金属工业中,正磷酸铝(A1(H2P04)3)被广泛用作耐火粘结剂。其在相对较低的温度下进行干燥的过程中产生良好的干坯强度,并在随后的烧制过程中发生较低的干坯收縮并产生良好的强度。正磷酸铝相对廉价,可广泛地获得,并且需要相对较低的烧制温度(1,100'C)来获得最终的磷酸铝(A1P04)粘结物。由于这些原因,并且由于正磷酸铝的成本相对较低,所以所述材料广泛用于在过滤熔融铝中使用的多孔陶瓷过滤介质的制造中。然而,所得到的磷酸铝粘结物易于与许多市售铝合金中的镁发生反应。镁是市售铝合金中最为常见的合金元素之一。熔融铝中的镁具有高的反应性,并且具有相对较高的蒸气压,因此容易渗入任何耐火基质中并在其中与几乎所有常见的氧化物材料容易地发生反应。磷酸铝对铝合金中的镁蒸气的反应性较高,并不像最初所认为的、并在Pryor和Brockmeyer的专利中所公开的那样稳定。相反,该材料易于被镁还原A1P04(s)+4Mg(g)=^AIP(s)+4MgO(s)由于磷酸铝是过滤介质基质的连续部分,因此磷酸铝粘结物的劣化导致过滤介质在使用过程中强度降低或"软化"。对粘结相的腐蚀性侵蚀是晶间属性,其损害了过滤介质结构并潜在地使过滤介质在使用时过早失效。该反应甚至在仅高于铝的液相温度的相对较低的温度下即可发生,并且随时间、镁含量和温度而快速增加。使用光学显微镜和扫描电子显微镜对使用过的过滤介质进行冶金学分析,结果证实了磷酸铝粘结物的劣化。图3示出了对磷酸铝粘结的氧化铝过滤介质的晶间侵蚀作用。上述反应导致熔融铝润湿并进入过滤介质结构中,因此增强了对过滤介质结构的腐蚀作用。过滤介质结构受到的腐蚀作用导致氧化铝晶粒和磷化铝颗粒释放到熔融铝中并在其中成为合金熔体的夹杂物。此外,磷酸铝粘结物无法保护过滤介质基质中的硅铝酸盐纤维,因此硅铝酸盐纤维也受到化学侵蚀。腐蚀性侵蚀后残留在过滤介质内部的磷化铝在随后对使用过的过滤介质进行处理和处置的过程中成为一种潜在的危险物。当使用过的过滤材料与环境水蒸汽接触或直接与水接触时,根据如下反应会形成磷化氢气体2A1P+3H20=^2PH3+A120,,磷化氢气体是高度可燃性和毒性气体。结果,使用过的过滤介质可能需要进行特殊处理。磷酸铝粘结物也导致了较差的抗热震性。烧制后,磷酸铝具有块磷铝矿晶体结构,其在8(TC至18(TC内经历了体积增加2%至3%的结构相转变。这种体积改变导致急剧的膨胀,从而降低了材料的抗热震性,并增加了过滤介质本体中的侧压应力。图2示出了磷酸铝粘结的氧化铝过滤介质的热膨胀以及低温相转变。下面是对用于多孔陶瓷过滤材料的理想材料的要求1.高的抗热震性一材料必须在预热或与烙融金属接触的过程中不会破裂或碎裂。材料的热膨胀应当较低,从而在置于滤罩中的时候使侧压应力最小化。2.耐腐蚀性过滤材料不应该在预计应用范围(时间、温度、合金含量)内发生显著的反应,并且不能被熔融铝和铝的常规合金润湿。3.足够的抗弯强度和抗压强度。4.能够经济地生产。5.过滤材料在使用后必须能安全地进行处理和处置。6.密度较低或重量较轻以使铸坑操作人员容易处理。现在还没有一种能提供所有这些特征的过滤材料。本文提供这样一种过滤介质。
发明内容本发明的目的是提供一种改善的熔融铝用过滤介质。本发明的另一目的是提供一种熔融铝用过滤介质,所述过滤介质具有高的抗热震性、高的耐腐蚀性、足够的强度、能够经济地制造、环境友好性高于现有技术的过滤介质、并且具有较低的密度。本发明的具体的特征是能够利用相对廉价的起始材料,同时仍能获得优异的性能。下面的熔融铝合金用多孔陶瓷过滤介质提供将要得以实现的这些和其他优点,所述多孔陶瓷过滤介质包含硼玻璃壳和富含硅酸铝的核(alumina-silicaterichcore),并且所述过滤介质的化学组成包含20重量%至70重量%的氧化铝、20重量%至60重量%的二氧化硅、0重量%至25重量%的至少一种II族元素氧化物和2重量%至20重量%的氧化硼。另外,另一个实施方案提供一种形成多孔陶瓷过滤介质的方法。该方法包括形成包含固相和载体相的桨料,所述固相包含20重量%至70重量%的氧化铝、20重量%至60重量%的二氧化硅、0重量%至20重量。/。的f丐化合物、0重量%至20重量%的氧化镁和2重量%至20重量%的硼化合物;使用所述浆料浸渍开孔型多孔材料;使所述载体挥发;以及进行烧结。特别优选的实施方案是提供这样一种多孔陶瓷过滤介质,其包含65重量%至85重量%的核以及15重量%至35重量%的包裹所述核的壳,其中所述核包含硅酸铝,并且其中所述壳包含15重量%至45重量%的氧化铝、2重量%至35重量%的二氧化硅、15重量%至50重量%的氧化硼、0重量%至25重量%的至少一种工1族元素(优选钙、钡、镁或锶)氧化物。图1为多孔陶瓷过滤介质置于滤罩中的示意图。图2用图形示出膨胀百分率与磷酸铝粘结的氧化铝过滤介质的温度之间的关系,特别是示出在约8(TC至18(TC下发生的有害的相转变。图3为示出磷酸铝粘结的氧化铝过滤介质在725T下在镁(4.5重量%)铝合金中浸渍2小时后的晶间侵蚀的反射光显微照片。图4为示出本发明的过滤介质在725'C下在镁(4.5重量%)铝合金中浸渍2小时后的反射光显微照片。图5用图形示出本发明过滤介质的MOR随相对密度变化的情况。图6用图形示出本发明过滤介质的膨胀率随温度变化的情况。图7为示出在测试中不与熔融铝反应、并且保持未润湿的微孔过滤材料的背散射电子显微照片。图8为示出在测试中既未被润湿也没有发生反应的过滤介质-金属界面的本发明过滤材料的光学显微照片。图9为本发明的实施例在75(TC下在熔融的镁铝合金中测试2小时后的电子显微照片,该照片表明在金属-过滤介质界面处既没有发生反应也没有润湿。图IO用图形示出现有技术的磷酸盐粘结的氧化铝(PBA)过滤介质的膨胀百分率与本发明过滤介质的膨胀百分率的对比情况。具体实施例方式本发明涉及多孔过滤介质,其特别适于过滤熔融铝或铝合金。该过滤介质具有基本组成如下的核壳结构20重量%至70重量%的氧化铝、20重量%至60重量%的二氧化硅、0重量%至25重量%的n族元素氧化物和2重量%至20重量%的氧化硼,并且所述核富含氧化铝和二氧化硅,所述壳含有包裹所述核的硼玻璃组合物。更优选的是,所述基本组成包含40重量%至60重量%的氧化铝、30重量%至50重量%的二氧化硅、0重量%至10重量%的氧化,丐、0重量%至10重量%的氧化镁和3重量%至10重量%的氧化硼。n族元素氧化物优选包括钙、镁、锶、和钡的至少一种氧化物。最优选的是,过滤介质的组成具有占65重量%至85重量%的核和占15重量%至35重量%的壳。更优选的是,核占过滤介质的70重量%至80重量%,其余为壳。壳将核包裹从而保护核在过滤过程中避免受到化学侵蚀,特别是避免受到镁的侵蚀。核优选含有45重量%至60重量%的氧化铝和40重量%至55重量%的二氧化硅。氧化铝和二氧化硅优选以硅酸铝的形式加入,例如莫来石、蓝晶石、硅线石、煅烧高岭土和红柱石。最优选的是蓝晶石。其他潜在的成核材料为其他低热膨胀性或零热膨胀性的硅酸盐材料,如熔融石英、锂-铝-硅酸盐(透锂长石)和镁-铝-硅酸盐(堇青石)。壳主要为硼玻璃粘结的基质,其包裹核。壳优选包含15重量%至45重量%的氧化铝、2重量°/。至35重量%的二氧化硅、15重量%至50重量%的氧化硼、0重量%至25重量%的至少一种n族元素氧化物。更优选的是包含15重量%至25重量%的氧化铝。更优选的是包含5重量%至10重量%的二氧化硅。更优选的是包含30重量%至50重量%的氧化硼。优选的是II族元素氧化物选自钙、锶、钡和镁的氧化物。本发明采用与之前的多孔陶瓷过滤介质技术不同的方法。使用低热膨胀性硅铝酸盐晶粒(最优选为蓝晶石或莫来石)代替氧化铝,从而获得改善的抗热震性,同时降低了侧压应力。然而莫来石和蓝晶石会与熔融铝和铝合金反应。为了保护晶粒材料避免受到化学侵蚀,使用相对惰性的基于复合硼玻璃的粘结剂相,所述复合硼玻璃含有II族元素氧化物(优选氧化钙或氧化镁)、氧化铝和二氧化硅。硼玻璃粘结物在形成核壳结构的整个过滤介质基质中都是连续的,并且硼玻璃壳完全包裹聚集的晶粒核并且保护其避免受到镁蒸气的侵蚀。这种硼玻璃粘结物在较低温度下产生良好的干坯强度,并且在烧制过程中起到使蓝晶石晶粒熔融并粘结在一起的作用。这种新型过滤介质主体在熔融金属观U试中表现出对镁蒸气侵蚀具有优异的耐受性。图4示出了在725'C下在镁(4.5重量%)铝合金中浸渍测试2小时后的新型过滤介质,该条件与用于图3所示的磷酸铝粘结的过滤介质的条件相同。其他金属氧化物材料可作为杂质少量(一般低于3重量%)存在于所述配制物中。所述的其他金属氧化物材料包括K20、Na20、Fe203、Ti02等。多孔陶瓷材料具有开孔结构并分布有被陶瓷材料的网包围的连接的孔隙。这种结构通常用于过滤熔融金属,其在工业上被称为陶瓷泡沫。本发明的多孔陶瓷过滤介质的热膨胀率为1.5x10—、m/mm〃C至7.5x10—6mm/mm/°C。更优选的是,本发明的多孔陶瓷过滤介质的热膨胀率为5.0xl(r6mm/mm厂C至6.0x10-6mm/mm/°C。多孔陶瓷过滤介质在常规使用条件下显示出对熔融铝合金的化学侵蚀作用具有耐受性。多孔陶瓷过滤介质重量较轻,其密度优选为约0.25克/立方厘米至0.40克/立方厘米。所述过滤介质基本上没有显示出反应性,并且在过滤熔融的铝合金后没有产生磷化氢气体或反应性物质。已经证实现有技术的磷酸盐粘结的氧化铝过滤介质在使用后会产生磷化氢气体,从而易于着火。优选加入对材料具有强化作用的陶瓷纤维。特别优选的纤维包括氧化铝;二氧化硅;铝、镁、钙的硅酸盐;以及它们的组合。特别优选的是Pyrolog⑤纤维。Pyrolog⑧纤维包含约47重量%的氧化铝和约53重量%的二氧化硅。其他优选的纤维为Isofrax1260纤维(硅酸镁)或Insufrax3010/3011纤维(硅酸钙镁)。在一个实施方案中,壳含有含硼玻璃粉。特别优选的含硼玻璃是可得自MatrixEnterprises的B40C,其包含约30.8重量%的氧化铝、2.4重量%的二氧化硅、23.25重量%的氧化钙、41.38重量%的氧化硼、1.47重量%的氧化钠,其余为诸如三氧化二铁、氧化钾和氧化镁之类的杂质。过滤介质具有泡沫宏观结构所赋予的原生多孔结构,所述原生多孔结构是聚氨酯前体的外骨架,并且是通过使用浆料涂敷,接着进行千燥和烧制而复制成的。原生孔径通常为3个孔/线性英寸(ppi)至100ppi,更优选为20ppi至70ppi。在烧结过程中在硼玻璃粘结剂相中形成分散的微孔孔隙。由于孔隙往往会减弱任何可能发生的热震裂纹的扩展,因此据信,分散的微孔结构进一步提高了抗热震性。总的热膨胀系数明显低于磷酸盐粘结的氧化铝过滤介质的热膨胀系数。微孔孔隙的孔径为约0.1微米至10微米,更优选为0.5微米至5微米。蓝晶石为岛状硅酸盐类的硅铝酸盐的高压多晶型体,其包括蓝晶石、硅线石和红柱石。这三种高铝矿物或富铝矿物具有类似的化学组成Al2Si05,但它们具有不同的晶体结构。多孔陶瓷材料是通过将水性浆料浸渍到挠性开孔泡沫前体的孔筋(strut)上而制得的。随后对该材料进行干燥和烧制,从而制得最终的多孔陶瓷制品。前体可以是具有足以在压縮后恢复其初始形状的弹性的任何类型的材料。为此,通常使用聚氨酯泡沫。陶瓷浆料是通过将所需成分混合在一起、从而形成颗粒的水性悬浮液而制得的。浆料优选具有这样的流变特性,使得在施加应力时(如浆料浸入聚氨酯泡沫的过程中)浆料容易流动,但当除去应力时浆料不流动。这种浆料具有固有的高的屈服应力和触变性。就制备本发明的材料而言,初始成分优选具有高含量的尺寸达325目的蓝晶石晶粒。该材料的标称粒径通常低于44微米。然而,使用尺寸比44微米更粗或更细的蓝晶石晶粒也是可以接受的。通常可得的晶粒的尺寸达270目,标称粒径通常低于53微米。蓝晶石粉末是在多种陶瓷产品中广泛应用的普遍可得到的原料。蓝晶石粉末是经开采、清洗并煅烧的产品,其含有约95%的蓝晶石矿物、3%的石英和2%的其他物质或杂质。所用粉末通常的组成为约58%的氧化铝、40%的二氧化硅、1%的二氧化钛,其余为杂质。己知蓝晶石矿物在超过120(TC的温度下会转变为低密度莫来石结品相。这种转变是不可逆的。本发明展示了蓝晶石粉末在制造多孔陶瓷过滤介质中的应用,何任何硅铝酸盐粉末、无定形二氧化硅粉末、硅酸镁铝粉末或硅酸锂铝粉末都能同样有效地使用。这种市售可得的材料的例子包括莫来石、堇青石、透锂长石或熔融石英。优选的是,本发明在水性浆料中使用40重量%至60重量%的蓝晶石粉末。据认为,蓝晶石材料会产生稳定的晶粒结构,从而赋予最终产品较低的热膨胀特性。此外,大量和长期稳定地供应原料的成本较低。水性浆料另外还使用含硼原料,所述含硼原料在烧制过程中为最终产品提供玻璃相形成体。示例性的原料包括硼酸、氧化硼、硬硼钙石、硼酸钙或含硼玻璃。硼酸是最优选的。在水性浆料中以2重量%至25重量%的浓度使用的含硼材料与其他桨料成分一起在烧制过程中提供玻璃相形成体系。这种玻璃构成壳材料,其继而会保护硅铝酸盐晶粒在使用时避免受到熔融铝合金的侵蚀。水性浆料优选含有辅料来控制各种性能。特别优选的辅料包括表面活性剂、流变改进剂、消泡剂、烧结助剂、溶剂、分散剂等。裝料可定义为具有固相和载体相,其中固相包括陶瓷前体,载体相包括溶剂和辅料。水是优选的溶剂或载体。在使用水性陶瓷浆料浸渍泡沫前体后,陶瓷材料的干燥通常在对流型干燥器中在IOO'F至600下的温度下进行15分钟至6小时。为了生产的经济性和高的生产率,较短的干燥持续时间更为有利。陶瓷材料的烧制通常在高于可形成材料的玻璃相并可发生粘结的温度下进行,这样形成了最终产品所需的强度和耐腐蚀性特性。烧制通常在温度超过UOO。C的连续式炉中进行1小时至3小时,并且最高温度保持15分钟至1小时。较低的温度和较短的持续时间可改善生产的经济性。然而,必须提供足够的时间和温度以使材料获得所需的强度和耐腐蚀性。过滤介质的孔径主要由所述方法中使用的聚合物泡沫的起始孔径决定。为了有效地过滤铝合金,原生孔径通常为10至70个孔/线性英寸。然而,根据浇注车间或制坯机在某种应用所要求的过滤效率和所需的过滤介质渗透性方面的要求,每种应用将需要独特的孔径。制得的过滤介质的热膨胀率为1.5x10—6mm/mmrC至7.5x10—6mm/mm/°C。更优选的是,制得的过滤介质的热膨胀率为5,Oxl(r6mm/mm/。C至6.5xl(T6mm/mm/°C。该测试是根据ASTME831进行的。断裂模量(MOR)测试是用于测试陶瓷材料强度的常规测试。在该测试中,标称尺寸为12英寸x2英寸x2英寸的测试棒在下层测试棒的跨距为6英寸的条件下以三点施加负荷的方式发生断裂。记录使测试棒断裂所需的最大力,并按照如下公式计算MOR:其中P为断裂负荷,L为跨距,W为部件宽度,t为部件厚度。对于本发明多孔陶瓷过滤介质而言,当相对密度小于11%时,MOR超过50磅A平方英寸。最终产品的耐腐蚀性测试对于评价材料对铝合金腐蚀性环境的承受能力而言是关键的。通过实验室测试、现场测试或两种方式合用来进行耐腐蚀性测试。在实验室测试中,从代表性材料上切下小的样品试样,并将其在热的腐蚀性铝合金中暴露特定的时间。对使用的合金进行选择,使得其含有至少4.5重量%的镁以表示合金腐蚀条件中的最恶劣的情况。对多种熔融温度进行考察,以评价现场操作条件的变化所导致的影响。在该实验室测试中,样品必须连续地暴露于刚刚熔融的金属,以确保尽可能与现场条件接近。为了达到这一目的,在样品浸入熔融合金中的同时对其进行搅拌,或者将样品连续地提起并放落,以使熔融合金从多孔陶瓷过滤介质样品的多孔结构中流过。在以这种暴露方式暴露于金属中至少2小时后,将样品从熔融的金属中取出,并在铝冷却板上快速冷却。这种快速定向凝固确保得到相对完好或没有多孔结构的样品,以进行随后的冶金学分析。在现场测试中,在生产环境中使用半连续式垂直方向冷却法来对整个过滤介质进行测试。测试时间通常为35分钟至120分钟。选择测试位置,在该位置处使用AA6063或AA6061、或其他含镁的铝合金。使用标准的过滤介质衬垫和过滤介质预热条件。测试中所收集的数据包括金属流速和浇注条件、熔融金属的温度、以及在预热过程中和浇注后立即目视观察过滤介质状况的结果。浇注后,对使用过的过滤介质进行冶金学分析,从而评价它们对腐蚀性熔融铝合金的承受能力。在本领域中,孔径通常是指线性尺寸中的孔的数量,如孔数/英寸。较高的ppi值表示孔的直径较小。这是记录孔径的标准方法。在本说明书中,术语"铝合金"旨在包括铝。多孔陶瓷材料的密度通常被记录为相对密度。相对密度为测量密度与理论密度的比值,其中理论密度是假定没有孔隙的条件下的密度。实施例1按照常规的多孔陶瓷的制造方法来制备本发明的多孔陶瓷材料。在该实施例中,由如下成分制得水性浆料。<table>tableseeoriginaldocumentpage22</column></row><table>将这些成分混合在一起,以形成基本上均匀的水性浆料,该混合物的粘度为lO,OOOCp至20,000Cp。然后将浆料浸入具有所需孔径(接近30个孔/线性英寸(ppi))的聚氨酯泡沫前体的孔中。随后使用辊将浆料从聚氨酯泡沬中挤出,并重复这一过程,直至在聚氨酯泡沫的孔筋上涂布了浆料的均匀涂层为止。在该方法中,设定这样的辊间距,使得所需的最终产品的相对密度为10%至12%。随后将过滤介质在对流式烘箱中干燥,以除去浆料中的液相,从而形成具有干坯强度的制品或刚性制品。随后将过滤介质在辊道炉膛中于两小时内烧至最高温度1185°C,从而制得最终产品。由相同的配方制得多个过滤介质以用于多种特性测定。产品的最终理论组成为53.9重量%的Al203、33.2重量%的Si02、2.5重量%的CaO、1.4重量%的MgO、7.3重量%的B203、1.0重量%的Ti02和余量0.7%的杂质(如K20、Na20、Fe203和其他物质)。将这些材料切成条带以测定产品的断裂模量(MOR)。图5示出该实施例的过滤介质的测定结果。此外将过滤介质进行切割以获得用于热膨胀特性测定的样品。图6示出了该样品的材料热膨胀的结果。由该曲线发现材料的平均热膨胀率为6.oxio—6英寸/英寸rc。制备用于熔融金属浸渍测试的3.8cmx5.08cmx45.72cm(1.5英寸x2.0英寸"8英寸)的测试棒,从而证实其在镁(4.5%)铝合金中的耐腐蚀性和不润湿性能。测试棒的孔径为3.93个孑L/厘米(10ppi),并按照与本实施例的其他材料所述类似的方式进行制备。不同之处在于,为了进行耐腐蚀性测试,测试棒浆料具有直径为80微米的聚合物微球,其中,将所述微球加入浆料中以赋予受控的微孔。为了产生孔隙而在材料中加入聚合物球的设想在美国专利6,036,743中有所披露。其目的是为了测试髙微孔性过滤材料在耐腐蚀性测试过程中能否抵抗得住熔融金属的润湿和渗透。将测试棒浸入12英寸深的熔融铝的坩埚内,温度保持为75(TC。随后将测试棒在坩埚内旋转以确保熔融的金属在测试过程中从多孔陶瓷棒的孔中流过。耐腐蚀性测试的时间为2.5小时。测试结束后,将测试棒从坩埚中移出,并将其底端靠在铝冷却板上凝固。随后从测试棒的底端切下测试棒的一部分,并通过研磨和抛光来制备金相样品。图7为示出过滤介质-金属界面的扫描电子显微照片。图7示出了包括球形微孔的过滤材料,所述过滤材料保持未润湿并且没有与熔融的镁(4.5%)铝合金反应。这被视为是基于下列条件的非常苛刻的测试,所述条件为卨的金属温度(750°C)、测试时间(2.5小时)、浸入深度(12英寸)、孔径和卨的镁含量。实施例2在该实施例中,成分如下所示<table>tableseeoriginaldocumentpage24</column></row><table>按照与实施例1中所述类似的方法利用上述成分来制备多孔陶瓷材料。最终材料的理论组成为52.3重量%的A1203、34.9重量%的Si02、2.4重量%的CaO、1.4重量%的MgO、7.2重量%的B203、1.1重量%的Ti02和余量0.7%的杂质(如K20、Na20、Fe203和其他物质)。测定产品的MOR,在平均相对密度为11.6%时平均MOR为56.5磅/平方英寸,并且在平均相对密度为11.0%时平均抗压强度为64.4磅/平方英寸。优选的是,过滤材料的弹性模量不超过约300GPa,更优选的是不超过约150GPa。利用上述浆料配制物来制备尺寸为50.8cmx50.8cmx5.08cm(20英寸x20英寸"英寸)的过滤介质,以在生产型铸铝用壳体中进行测试,所述壳体用于通过直接冷铸法来生产AA6063(0.90。/。的Mg)的挤压坯料。用于该测试的过滤介质的孔径为30ppi,并且相对密度为约11.5%。浇注时间为约40分钟至50分钟,滤罩中金属温度为680°C至720°C。取决于坯料直径和浇注的铸带条的数量,金属流速为344.7kg/分钟至453.2kg/分钟(760磅/分钟至933磅/分钟)。保留使用过的过滤介质以进行冶金学评价,从而检测出过滤材料和熔融铝合金之间的任何反应,同时确定过滤介质是否保持未润湿的状态。图8为示出未与熔融的铝合金反应、且保持未润湿状态的过滤材料的光学显微照片。实施例3在该实施例中,成分如下所示<table>tableseeoriginaldocumentpage25</column></row><table>按照与实施例1中所述类似的方法利用上述成分来制备多孔陶瓷材料。最终材料的理论组成为50.7重量%的A1203、37.3重量%的Si02、4.0重量%的CaO、6.3重量%的B203、1.0重量%的Ti02和余量0.7重量%的杂质(如K20、Na20、Fe203和其他物质)。评价多孔陶瓷部件的产品强度,并进行耐腐蚀性测试。在平均相对密度为10.5%时测得产品的平均MOR为75.5磅/平方英寸。在平均相对密度为9.8%时产品的抗侧压强度(lateralcrushstrength)平均为72.2磅/平方英寸。使用直径为1.30英寸的金刚石钻岩机,从上述材料获得圆柱形测试过滤介质。随后将这些样品(2英寸厚)插入长18英寸的莫来石管的内部,并使用可热膨胀的纤维衬垫固定在管内的合适位置处。随后将过滤介质-管组件预热,然后将其浸入装有熔融的镁(4.5%)铝合金的12英寸深的坩埚内,测试2小时。在675"C、70(TC、725°〇和75(TC下进行浸渍测试。在浸渍测试过程中,将过滤介质-管组件连续提起并放落以模拟在现场应用中通常所遇到的金属流速。测试结束后取出过滤介质-管组件,并将装有过滤介质的底端靠在铝冷却板上凝固。随后由过滤材料制备金相样品,并利用光学显微镜法来进行评价。图9示出了在75(TC下在含有4.5重量%的镁的熔融铝中测试2小时后,实施例3的样品的电子显微照片。如图9所示,即使在这些相对苛刻的条件下,也不存在任何熔融金属与过滤介质之间的反应,并且过滤材料保持未润湿的状态。在图9中,看起来平滑的区域为核,围绕所述核的基质为壳。实施例4制备这样一种过滤介质,其包含占过滤介质的65重量%至85重量%的核,所述核含有蓝晶石,该蓝晶石具有约57.5重量%的A1203、40.3重量%的Si02,其余为通常与蓝晶石相关的杂质,如K20、Na20、Fe203、Ti02和MgO。壳占过滤介质的约15重量%至35重量%,所述壳包含约19.82重量%的A1203、23.3重量%的Si02、21.94重量%的CaO和34.75重量%的B203,其余为诸如K20、Na20、Fe203、Ti02和MgO之类的杂质。图IO示出了实施例4相对于现有技术在热膨胀性方面的改善。实施例5制备这样一种过滤介质,其包含占过滤介质的65重量%至85重量%的核,所述核含有蓝晶石,该蓝晶石具有约57.5重量%的A1203、40.3重量%的Si02,其余为通常与蓝晶石相关的杂质,如K20、Na20、Fe203、Ti02禾卩MgO。壳占过滤介质的约15重量%至35重量%,所述壳包含约40.79重量%的A1203、7.8重量%的Si02、11.05重量%的CaO、32.98重量°/。的B203、6.37重量%的MgO,其余为诸如〖20、Na20、Fe203和Ti02之类的杂质。在该实施方案中,在烧制之前,将玻璃粉(B40C玻璃粉)和剩余材料引入所述壳中,其中加入所述剩余材料是为了达到所需的组分比。此外,附加的二氧化硅为胶态二氧化硅。实施例6制备这样一种过滤介质,其包含占过滤介质的65重量%至85重量%的核,所述核含有蓝晶石,该蓝晶石具有约57.5重量%的A1203、40.3重量%的Si02,其余为通常与蓝晶石相关的杂质,如K20、Na20、Fe203、Ti02和MgO。壳占过滤介质的约15重量%至35重量%,所述壳包含约23.65重量%的A1203、4.89重量%的Si02、15.36重量%的CaO、45.84重量°/。的B203、8.85重量%的MgO,其余为诸如K20、Na20、Fe203、Ti02之类的杂质。在该实施方案中,在烧制之前,将玻璃料(B40C玻璃粉)和剩余材料引入所述壳中,其中加入所述剩余材料是为了达到所需的组分比。本发明特别参照优选实施方案进行了详细描述,但所述实施方案并不对本发明进行限定。在本文中教导的基础上,在不偏离本发明的要求和范围的条件下可实现另外的实施方案和可选方式,本发明的要求和范围在所附权利要求书中更具体地阐述。权利要求1.一种熔融铝合金用多孔陶瓷过滤介质,其包含硼玻璃壳和富含硅酸铝的核,并且所述过滤介质的化学组成包含20重量%至70重量%的氧化铝、20重量%至60重量%的二氧化硅、0重量%至25重量%的至少一种II族元素氧化物和2重量%至20重量%的氧化硼。2.权利要求1所述的熔融铝合金用多孔陶瓷过滤介质,其含有65重量%至85重量%的所述核和15重量%至35重量。/。的所述壳。3.权利要求2所述的熔融铝合金用多孔陶瓷过滤介质,其含有70重量%至80重量%的所述核。4.权利要求1所述的熔融铝合金用多孔陶瓷过滤介质,其中所述核被所述壳包裹。5.权利要求1所述的熔融铝合金用多孔陶瓷过滤介质,其中所述核包含45重量%至60重量°/。的氧化铝和40重量%至55重量%的二氧化硅。6.权利要求1所述的熔融铝合金用多孔陶瓷过滤介质,其中所述核包含硅酸铝。7.权利要求6所述的熔融铝合金用多孔陶瓷过滤介质,其中所述硅酸铝包括选自莫来石、蓝晶石、硅线石、煅烧高岭土和红柱石中的至少一种材料。8.权利要求7所述的熔融铝合金用多孔陶瓷过滤介质,其中所述核包含蓝晶石。9.权利要求1所述的熔融铝合金用多孔陶瓷过滤介质,其中所述II族元素氧化物包括镁、钙、锶和钡的氧化物中的至少一种。10.权利要求9所述的熔融铝合金用多孔陶瓷过滤介质,其中所述II族元素氧化物包括镁和钙的氧化物中的至少一种。11.权利要求1所述的熔融铝合金用多孔陶瓷过滤介质,其中所述壳包含15重量%至45重量%的氧化铝、2重量%至35重量%的二氧化硅、0重量%至25重量%的氧化,丐、15重量%至50重量%的氧化硼和0重量%至25重量%的氧化镁。12.权利要求11所述的熔融铝合金用多孔陶瓷过滤介质,其中所述壳包含15重量%至35重量%的氧化铝。13.权利要求12所述的熔融铝合金用多孔陶瓷过滤介质,其中所述壳包含15重量%至25重量%的氧化铝。14.权利要求11所述的熔融铝合金用多孔陶瓷过滤介质,其中所述壳包含10重量%至35重量%的二氧化硅。15.权利要求11所述的熔融铝合金用多孔陶瓷过滤介质,其中所述壳包含5重量%至10重量%的二氧化硅。16.权利要求11所述的熔融铝合金用多孔陶瓷过滤介质,其中所述壳包含20重量%至50重量%的氧化硼。17.权利要求16所述的熔融铝合金用多孔陶瓷过滤介质,其中所述壳包含30重量%至50重量%的氧化硼。18.权利要求1所述的熔融铝合金用多孔陶瓷过滤介质,其中所述壳包含含硼的玻璃粉。19.权利要求1所述的熔融铝合金用多孔陶瓷过滤介质,其中所述壳包含纤维。20.权利要求19所述的熔融铝合金用多孔陶瓷过滤介质,其中所述纤维包含选自氧化铝和硅酸铝中的材料。21.权利要求19所述的熔融铝合金用多孔陶瓷过滤介质,其中所述纤维包含选自硅酸钙镁纤维和硅酸镁纤维中的材料。22.权利要求19所述的熔融铝合金用多孔陶瓷过滤介质,其中所述纤维包含70重量%至80重量%的二氧化硅和18重量%至27重量%的氧化镁。23.权利要求1所述的熔融铝合金用多孔陶瓷过滤介质,其理论密度为7%至18%。24.权利要求1所述的熔融铝合金用多孔陶瓷过滤介质,其原生孔径为3个孔/线性英寸至100个孔/线性英寸。25.权利要求1所述的熔融铝合金用多孔陶瓷过滤介质,其原生孔径为20个孔/线性英寸至70个孔/线性英寸。26.权利要求1所述的熔融铝合金用多孔陶瓷过滤介质,其中所述壳具有孔径为0.1微米至IO微米的微孔。27.权利要求1所述的熔融铝合金用多孔陶瓷过滤介质,其中所述壳具有孔径为0.5微米至5微米的微孔。28.权利要求1所述的熔融铝合金用多孔陶瓷过滤介质,其热膨胀率为至少1.5xl(r6mm/mm/。C到不超过7.5xl(T6mm/mm/°C。29.权利要求1所述的熔融铝合金用多孔陶瓷过滤介质,其热膨胀率为至少5xl0-6mm/mm/。C到不超过6.5xl(T6mm/mm/°C。30.权利要求1所述的熔融铝合金用多孔陶瓷过滤介质,其在理论密度小于11%时的断裂模量为至少50磅/平方英寸。31.权利要求1所述的熔融铝合金用多孔陶瓷过滤介质,其密度为0.25克/立方厘米至0.4克/立方厘米。32.权利要求1所述的熔融铝用多孔陶瓷过滤介质,其在暴露于熔融铝合金中的持续时间小于2小时的条件下,基本上对所述合金的化学侵蚀作用具有耐受性。33.权利要求1所述的熔融铝合金用多孔陶瓷过滤介质,其在暴露于熔融铝合金中的持续时间小于2小时的条件下,基本上不被所述合金润湿。34.权利要求1所述的熔融铝合金用多孔陶瓷过滤介质,其在理论密度小于11%时的断裂模量为至少50磅/平方英寸。35.—种形成多孔陶瓷过滤介质的方法,该方法包括形成含有固相和载体的浆料,所述固相含有20重量%至70重量%的氧化铝、20重量%至60重量%的二氧化硅、0重量%至20重量%的钙化合物、0重量%至20重量%的镁化合物和2重量%至20重量%的硼化合物;用所述浆料浸渍开孔型多孔材料;使所述载体挥发;以及加热以形成多孔陶瓷过滤介质。36.权利要求35所述的形成多孔陶瓷过滤介质的方法,其中所述浆料包含硅酸铝。37.权利要求36所述的形成多孔陶瓷过滤介质的方法,其中所述硅酸铝包括选自莫来石、蓝晶石、硅线石、煅烧高岭土和红柱石中的至少一种材料。38.权利要求37所述的形成多孔陶瓷过滤介质的方法,其中所述硅酸铝包括蓝晶石。39.权利要求37所述的形成多孔陶瓷过滤介质的方法,其中所述硅酸铝基本上由蓝晶石构成。40.权利要求35所述的形成多孔陶瓷过滤介质的方法,其中所述硼化合物包括选自硼酸、氧化硼、硬硼钙石、硼酸钙和硼玻璃中的化合物。41.权利要求40所述的形成多孔陶瓷过滤介质的方法,其中所述硼化合物为硼酸。42.—种多孔陶瓷过滤介质,其包含65重量%至85重量%的核和15重量%至35重量%的包裹所述核的壳,其中所述核包含硅酸铝,并且其中所述壳包含15重量%至45重量%的氧化铝、2重量%至35重量%的二氧化硅、0重量%至25重量%的氧化钙、15重量%至50重量%的氧化硼和0重量%至25重量%的氧化镁。43.权利要求42所述的多孔陶瓷过滤介质,其含有70重量%至80重量%的所述核。44.权利要求42所述的多孔陶瓷过滤介质,其中所述核包含45重量%至60重量%的氧化铝和40重量°/。至55重量%的二氧化硅。45.权利要求42所述的多孔陶瓷过滤介质,其中所述硅酸铝包括选自莫来石、蓝晶石、硅线石、煅烧高岭土和红柱石中的至少一种材料。46.权利要求42所述的多孔陶瓷过滤介质,其中所述II族元素氧化物包括镁、钙、锶和钡的氧化物中的至少一种。47.权利要求46所述的多孔陶瓷过滤介质,其中所述II族元素氧化物包括镁和钙的氧化物中的至少一种。48.权利要求45所述的多孔陶瓷过滤介质,其中所述氧化铝包括蓝晶石。49.权利要求42所述的多孔陶瓷过滤介质,其中所述壳包含15重量%至35重量%的氧化铝。50.权利要求49所述的多孔陶瓷过滤介质,其中所述壳包含15重量%至25重量%的氧化铝。51.权利要求42所述的多孔陶瓷过滤介质,其中所述壳包含IO重量%至35重量%的二氧化硅。52.权利要求42所述的多孔陶瓷过滤介质,其中所述壳包含5重量%至10重量%的二氧化硅。53.权利要求42所述的多孔陶瓷过滤介质,其中所述壳包含20重量%至50重量%的氧化硼。54.权利要求42所述的多孔陶瓷过滤介质,其中所述壳包含30重量%至50重量%的氧化硼。璃^55.权利要求42所述的多孔陶瓷过滤介质,其中所述壳包含玻、万。56.权利要求42所述的多孔陶瓷过滤介质,其中所述壳包含纤维。57.权利要求56所述的多孔陶瓷过滤介质,其巾所述纤维包含选自氧化铝、二氧化硅和硅酸铝中的材料。58.权利要求56所述的多孔陶瓷过滤介质,其中所述纤维包含选自硅酸钙纤维和硅酸镁纤维中的材料。59.权利要求56所述的多孔陶瓷过滤介质,其中所述纤维包含70重量%至80重量%的二氧化硅和18重量。/。至27重量%的氧化镁。60.权利要求42所述的多孔陶瓷过滤介质,其理论密度为7%至18%。61.权利要求42所述的多孔陶瓷过滤介质,其密度为0.25克/立方厘米至0.40克/立方厘米。62.权利要求42所述的多孔陶瓷过滤介质,其原生孔径为3个孔/线性英寸至100个孔/线性英寸。63.权利要求42所述的多孔陶瓷过滤介质,其原生孔径为20水孔/线性英寸至70个孔/线性英寸。64.权利要求42所述的多孔陶瓷过滤介质,其中所述壳具有孔径为0.1微米至IO微米的微孔。65.权利要求64所述的多孔陶瓷过滤介质,其中所述壳具有孔径为0.5微米至5微米的微孔。66.权利要求42所述的多孔陶瓷过滤介质,其热膨胀率为至少1.5xl(r6mm/mm/。C至iJ不超过7.5x10-6mm/mm/°C。67.权利要求42所述的多孔陶瓷过滤介质,其热膨胀率为至少5x10-6mm/mmZ。C到不超过6.5xl()-6mm/mm/°C。68.权利要求42所述的多孔陶瓷过滤介质,其在理论密度小于11%时的抗侧压强度为至少50磅/平方英寸。69.权利要求42所述的多孔陶瓷过滤介质,其在理论密度小于11%时的断裂模量为至少50磅/平方英寸。70.权利要求42所述的多孔陶瓷过滤介质,其在暴露于熔融铝合金中的持续时间小于2小时的条件下,基本上对所述合金的化学侵蚀作用具有耐受性。71.权利要求42所述的多孔陶瓷过滤介质,其在暴露于熔融铝合金中的持续时间小于2小时的条件下,基本上不被所述合金润湿。全文摘要一种熔融铝合金用多孔陶瓷过滤介质,其包含硼玻璃壳和富含硅酸铝的核,并且所述过滤介质的化学组成包含20重量%至70重量%的氧化铝、20重量%至60重量%的二氧化硅、0重量%至10重量%的氧化钙、0重量%至10重量%的氧化镁和2重量%至20重量%的氧化硼。文档编号B01J20/02GK101415477SQ200780012126公开日2009年4月22日申请日期2007年4月2日优先权日2006年3月31日发明者F·迟,戴维·P·哈克,莱昂纳德·S·奥布里申请人:博韦尔公开有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1