一种去除全身炎症反应患者血液中炎症因子的吸附剂及其制备方法与流程

文档序号:15025425发布日期:2018-07-27 17:29阅读:1823来源:国知局

本发明属于生物医药技术领域。涉及用于血液灌流去除全身炎症反应患者血液中炎症因子的吸附剂及其制备方法。

技术背景:

各种形式的休克、创伤或感染,均可能导致机体相应细胞组分(如中性白细胞、巨噬细胞、内皮细胞等)的活化,产生一系列的炎症因子,从而产生全身炎症反应,并进一步损伤组织,导致多器官功能衰竭或脓毒症休克。

在我国,抗生素滥用、环境污染等导致了细菌和病毒变异频率的加快,众多病毒和细菌感染性疾病因得不到及时的救治而发展为脓毒血症,并最终导致多器官衰竭而死亡。全球每年有超过1800万严重脓毒症病例,我国更是每年有数百万脓毒症患者,并且这一数字还以每年1.5%~8.0%的速度上升。近年来,尽管抗感染治疗和器官功能支持技术取得了长足的进步,脓毒症的病死率仍高达30%~70%。脓毒症治疗花费高,医疗资源消耗大,严重影响人类的生活质量,已经对人类健康造成巨大威胁。如何清除感染所造成的血液中大量毒素及细胞因子(TNF-a,IL-1、IL-6、IL-8、IL-10等)的积蓄,是临床面临的重大难题,针对这种情况,开发一种能有效清除血液中的致病毒素和炎症因子的血液净化装置,将具有重大的经济和社会效益。

对脓毒血症患者体内炎症因子进行清除,已经被证明是一种行之有效的方法,我国虽有这方面的专利(如201310593832.4等),但吸附性能和国外相比尚有差距,且目前国内还没有该类产品问世。国外该类产品中,如日本采用多粘菌素B配基的灌流器,可用于脓毒血症的治疗,但该产品价格高昂,且存在配基脱落所带来的毒性作用,尚未进入我国市场。美国的Cytosorb产品,也是一种用于细胞因子清除的吸附剂产品,效果较好,但其对分子量较大的TNF-a清除效果较差,但也尚未进入我国市场。



技术实现要素:

本发明的目的在于克服现有技术存在的上述不足,提供一种可用于血液灌流清除血液或血浆中炎症因子的吸附剂及其制备方法。本发明吸附剂对血液中的炎症因子具有高效吸附性能,对关键炎症因子TNF-a,IL-1、IL-6、IL-8等的吸附能力均优于美国的Cytosorb产品。

本发明提供的用于血液或血浆灌流去除细胞因子的吸附剂是一种纳米复合结构介孔吸附剂,该吸附剂以纳米碳酸钙-苯乙烯-二乙烯苯为基本骨架,以甲苯、汽油和多碳醇混合物为致孔剂,以过氧化苯甲酰为引发剂而制成的细胞因子吸附剂。能有效清除血液或血浆中炎症因子。适宜用于血液或血浆灌流清除患者体内过量的致病性炎症因子。

所述的纳米复合结构介孔吸附剂为球形,粒度在300-800um之间,纳米碳酸钙含量在0.1%-10%之间(纳米碳酸钙在吸附剂中的质量分数),优选2%-6%;纳米碳酸钙的粒径在10-200nm之间。

所述的纳米复合结构介孔吸附剂的平均孔径在5-20nm之间,优选8-15nm;比表面积在700-1200m2/g之间,优选900-1100m2/g。

本发明提供的用于血液灌流去除炎症因子的吸附剂的制备方法包括以下步骤:

纳米复合结构介孔吸附剂(纳米碳酸钙-苯乙烯-二乙烯苯)合成;分别将纳米碳酸钙,苯乙烯,交联剂二乙烯苯,致孔剂甲苯、汽油和多碳醇(如异丙醇)的混合物按比例混合均匀,加入引发剂过氧化苯甲酰,溶解后加入含聚乙烯醇的水溶液中,调整搅拌速度至均匀分散,升温引发聚合、固化。反应完毕后,出球,乙醇充分洗涤后晾干,得聚合物微球。

本发明所述纳米复合结构介孔吸附剂合成的具体操作为:

将纳米碳酸钙与苯乙烯按1:10-20比例(重量比)混合均匀,加入占反应单体苯乙烯0.5-5倍的二乙烯苯作为交联剂,再加入占单体和致孔剂体系0.5-5倍(体积比)的致孔剂(其中甲苯、汽油和异丙醇的质量比为1:0.5-2:1),加入占反应单体和致孔剂总质量0.1%-2%的引发剂过氧化苯甲酰,超声、搅拌使纳米碳酸钙均匀分散,然后将该体系溶液加入到0.5%-2%(质量分数)的聚乙烯醇溶液,调节搅拌速率,升温至40-50℃后,以1-2℃/5min升温至75-85℃,待定型后在此温度下继续保持3-5h,再以1-2℃/5min的速度缓慢升温至90-95℃以上,反应3-10h,即得到纳米复合结构介孔吸附剂。粒径300-800um,平均孔径6-30nm,比表面积800-1200m2/g。

本发明设计的吸附剂具有较高的机械强度和物理化学稳定性,可采用常规方法如湿热和射线灭菌等。

本发明提供的吸附剂可用于血浆或全血灌流用于清除患者血液中的炎症因子,用于治疗系统性炎症疾病,如脓毒血症等。

本发明的优点和有益效果

本发明依据结合炎症因子,如TNF-a,IL-1、IL-6、IL-8、IL-10等的分子尺寸及理化结构特点,以及当前吸附剂存在的效率及强度问题,设计合成了纳米复合结构介孔吸附剂,该纳米复合结构吸附剂具有丰富的介孔,炎症因子分子可以自由进入吸附剂内部,同时纳米碳酸钙静电作用和纳米效应(小尺寸效应等)与苯乙烯骨架的疏水作用力协同,极大提高了吸附剂对炎症因子的吸附能力。吸附实验表明,本发明的吸附剂对血液中的炎症因子如TNF-a,IL-1、IL-6、IL-8、IL-10等具有优良的吸附能力,可用于治疗系统性炎症疾病如脓毒血症等。

附图说明

图1吸附剂对模拟血清中混合细胞因子的静态吸附测定。

图2吸附剂对血浆中混合细胞因子的静态吸附测定。

图3吸附剂对血浆中混合细胞因子的动态吸附测定,其中,a:NNC-1和Cytosorb对血浆中IL-1β的吸附动力学;b:NNC-1和Cytosorb对血浆中IL-6的吸附动力学;c:NNC-1和Cytosorb对血浆中TNF-a的吸附动力学;d:NNC-1和Cytosorb对血浆中IL-8的吸附动力学。

具体实施方式

实施例1

纳米复合结构介孔吸附剂的制备

将1.0g粒径在50-100nm的纳米碳酸钙加入20g苯乙烯和60g二乙烯苯于500mL的烧杯中,用超声细胞粉碎仪超声30min后,向其中加入0.8g过氧化苯甲酰,搅拌使其溶解,待溶解完全后,再向其中加入30g甲苯、60g汽油和30g异丙醇,充分混均,得到有机相。在常温下,将2000mL的三口烧瓶中加入8g聚乙烯醇和800mL去离子水,配成0.5%(质量分数)的聚乙烯醇的水溶液,并加热搅拌至45℃以使聚乙烯醇充分溶解,得到水相;停止搅拌,将得到的混合均匀的有机相加入水相中,开动搅拌器,调节搅拌速率,使液滴分布均匀,待升温至50℃后,以1-2℃/5min升温至80℃后,使液滴定型,待定型后在此温度下继续保持3h,再以1-2℃/5min的速度缓慢升温至95℃以上,反应5h,然后停止实验,过滤、用热水洗球,抽提致孔剂后,得到纳米复合结构介孔吸附剂。粒径0.5-0.8mm,平均孔径8.2nm,比表面积868m2/g,编号为NNC-1。

实施例2

纳米复合结构介孔吸附剂的制备

将1.25g粒径80-150nm的纳米碳酸钙加12.5g苯乙烯和67.5g二乙烯苯于500mL的烧杯中,用超声细胞粉碎仪超声30min后,向其中加入1.6g过氧化苯甲酰,搅拌使其溶解,待溶解完全后,再向其中加入30g甲苯、15g汽油、30g异丙醇,并用超声细胞粉碎仪超声30min,得到有机相。在常温下,将2000mL的三口烧瓶中加入9.6g聚乙烯醇和640mL去离子水中,配成1.0%(质量分数)的聚乙烯醇的水溶液,并加热搅拌至50℃以使聚乙烯醇充分溶解,得到水相;停止搅拌,将得到的混合均匀的有机相加入水相中,开动搅拌器,调节搅拌速度使油珠分散,以1-2℃/5min速度升温至80℃,使其定型,待定型后加大搅拌速度,并在此温度下继续保持3h,再以1-2℃/5min的速度缓慢升温至90℃以上,反应10h,然后停止实验,过滤、用热水洗球,抽提致孔剂后,得到交联聚苯乙烯-二乙烯基苯介孔纳米复合树脂。粒径0.4-0.8mm,平均孔径8.6nm,比表面积1000m2/g,编号为NNC-2。

实施例3:

纳米复合结构介孔吸附剂的制备

将1.5g粒径30-50nm的纳米碳酸钙加15g苯乙烯和80g二乙烯苯于500mL的烧杯中,用超声细胞粉碎仪超声30min后,向其中加入1.2g过氧化苯甲酰,搅拌使其溶解,待溶解完全后,再向其中加入55g甲苯、55g汽油、55g正丁醇,得到有机相。在常温下,将2000mL的三口烧瓶中加入16.8g聚乙烯醇和840mL去离子水中,配成2.0%(质量分数)的聚乙烯醇的水溶液,并加热搅拌至45℃以使聚乙烯醇充分溶解,得到水相;停止搅拌,将得到的混合均匀的有机相加入水相中,开动搅拌器,调节搅拌速度使油珠分散,以2℃/5min速度升温至78℃,使液滴定型,待定型后加大搅拌速度,并在此温度下继续保持3h,再以1-2℃/5min的速度缓慢升温至92℃以上,反应3h,然后停止实验,过滤、用热水洗球,抽提致孔剂后,得到交联聚苯乙烯-二乙烯基苯介孔纳米复合树脂。粒径0.5-1.0mm,平均孔径3.8nm,比表面积850m2/g,编号为NNC-3。

实施例4

模拟血清中体外静态吸附混合细胞因子的测定

混合细胞因子模拟血清的配制:称取1.5g牛血清白蛋白,加入100mL的PBS缓冲溶液使其溶解,得到模拟血清溶液。将一定量的IL-6、TNF-α、IL-1β和IL-8(美国R&D公司购买)加入到模拟血清中,使得制备的模拟血清中含有IL-6、TNF-α、IL-1β和IL-8的浓度各约为1000pg/mL。

取实施例1、2、3中的NNC-1、NNC-2、NNC-3纳米复合结构介孔吸附剂为试验组,以Cytosorb(美国Cytosorbents公司购买)树脂为阳性对照组,分别各取0.5mL的树脂于离心管中,加入3.5mL模拟炎症因子血清,封口膜密封,于空气摇床中,37℃震荡吸附2h。吸附完成后,离心,取上层液于4℃冰箱中保存待测。

根据ELISA试剂盒(美国R&D公司购买)的使用说明书作标准曲线,用时检测样品,利用四参数回归法求得待测样品中含有的IL-6、TNF-α、IL-1β和IL-8浓度。每组试验重复三次,并根据下列公式计算IL-6、TNF-α、IL-1β和IL-8的吸附率(AP)。

AP=(C1-C2)/C1*100%

式中,AP为吸附率(%),C1和C2分别为吸附前后IL-6、TNF-α、IL-1β和IL-8的浓度(mg/mL)。

吸附率测试结果见图1。

实施例5

新鲜血浆中体外静态吸附细胞因子的测定

混合细胞因子新鲜血浆的配制:将一定量的IL-6、TNF-α、IL-1β和IL-8(美国R&D公司购买)加入新鲜血浆中,使得制备的血浆中含有IL-6、TNF-α、IL-1β和IL-8的浓度各约为1000pg/mL。取实施例1、2、3中的NNC-1、NNC-2、NNC-3介孔纳米复合微球为试验组,以Cytosorb(美国Cytosorbents公司购买)树脂为阳性对照组,分别各取0.5mL的树脂于离心管中,加入2mL血浆,封口膜密封,于空气摇床中,37℃震荡吸附2h。吸附完成后,离心,取上层液于4℃冰箱中保存待测。

根据ELISA试剂盒(美国R&D公司购买)的使用说明书作标准曲线,用时检测样品,利用四参数回归法求得待测样品中含有的IL-6、TNF-α、IL-1β和IL-8的浓度。每组试验重复三次,并根据下列公式计算IL-6、TNF-α、IL-1β和IL-8的吸附率(AP)。

AP=(C1-C2)/C1*100%

式中,AP为吸附率(%),C1和C2分别为吸附前后IL-6、TNF-α、IL-1β和IL-8的的浓度(pg/mL)。

吸附率测试结果见图2。

实施例6

新鲜血浆中混合细胞因子的体外动态吸附性能

混合细胞因子新鲜血浆的配制:将一定量的IL-6、TNF-α、IL-1β和IL-8(美国R&D公司购买)加入新鲜血浆中,使得制备的血浆中含有IL-6、TNF-α、IL-1β和IL-8的浓度各约为1000pg/mL。

取实施例1中的NNC-1介孔纳米复合微球为代表作为试验组,以Cytosorb(美国Cytosorbents公司购买)树脂为阳性对照组,分别各取2mL的树脂于吸附柱中,连接高细胞因子血浆(12mL)和恒流泵,灌流速度1.0mL/min,灌流时间为180min,分别在10min、30min、60min、90min、120min、150min和180min中取上层模拟血清于4℃冰箱中保存待测。

根据ELISA试剂盒(美国R&D公司购买)的使用说明书作标准曲线,用时检测样品,利用四参数回归法求得待测每个时间点含有的IL-6、TNF-α、IL-1β和IL-8的浓度。每组试验重复三次,并根据下列公式计算IL-6、TNF-α、IL-1β和IL-8的吸附率(AP)。

AP=(C1-C2)/C1*100%

式中,AP为吸附率(%),C1和C2分别为吸附前后IL-6、TNF-α、IL-1Β和IL-8的浓度(mg/mL)。

动态吸附性能结果见图3。

实施例7

纳米复合结构介孔吸附剂的溶血性能

将兔子固定好,耳缘静脉采血3mL,按抗凝血:生理盐水=4:5稀释血液,得到红细胞悬液。取干净试管若干,分别加入如下液体:a)阴性对照组——加5mL生理盐水;b)阳性对照组——加5mL蒸馏水;c)实验组——分别取实施例1、2、3中的NNC-1、NNC-2、NNC-3介孔纳米复合微球各2g和生理盐水5mL。每管加100uL红细胞悬液,37℃水浴1h。,每组试验重复三次,2500rpm离心,取上清液于545nm波长下测吸光度,并按下列公式计算溶血率:

(要求:阴性对照组≤0.03,阳性=0.8±0.3)

溶血率结果见表1:

表1:吸附剂的溶血性能测试

从表中溶血结果可知:本发明所得吸附剂均溶血率很低,几乎不存在溶血问题。

实施例8

纳米复合结构介孔吸附剂的静态血小板粘附测试

分别称取实施例1、2、3中的NNC-1、NNC-2、NNC-3纳米复合结构介孔吸附剂0.1g,用氯化钠注射液充分冲洗后加入1ml富含血小板兔血血浆,37℃水浴1h后,分别取20uL于血液细胞分析仪测定血小板指标变化,结果见下表2:

表2:吸附剂的血小板粘附性能测试

从表中结果可知:本发明所得吸附剂,均对血小板的粘附较少,具有良好的血液相容性,可用于全血灌流。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1