离心机料层控制器

文档序号:25277200发布日期:2021-06-01 16:10阅读:177来源:国知局
离心机料层控制器

本发明涉及离心机控制技术领域,特别涉及一种离心机料层控制器。



背景技术:

离心机是一种在化工、医药等领域进行物料固液分离使用的重要设备,离心机的原理是利用高速旋转使得固态物流中的液体从离心机滤篮的滤网甩出,来实现固液的分离。

旋转甩干过程中,一般需要通过离心机的进料管路往滤篮中加入固液混合的物料,在物料加入的同时,离心机高速旋转,甩出液体,固态物料在滤篮中形成固态物料的料层,随着加入物料的增加,料层逐渐增厚,当加入物料到达离心机的载荷限度后,料层到达一定的厚度,此时,就需要及时停止加料。

因此,离心机需要设置用于对料层的厚度进行检查的料位控制器,以在料层厚度到达设定厚度时及时停止加料。

目前常用的技术,是使用电子式的料位控制器,该料位控制器包括一个电子传感器,传感器放置在离心机的内部,用于感知料位的高度(即料层的厚度),从而估计料位的量。当料位的量达到预定的量之后,该传感器发出信号,停止向离心机中继续加料。使用电子式的传感器存在明显缺点,误判率比较高,对于料位的判断不准确,尤其是在离心机内部物料浆液飞溅的恶劣环境中,检测的误判率难以得到改善。

在一些机械式的料层控制器中,通过测料板和位置开关来测量料厚。但现有的这种机械式料层控制器,一般采用拉簧给予测料板以摆动的驱动力,使测料板在检测料层时抵压在料层表面。在料层控制器不需要测料的阶段,如出料、清洗、或打开离心机机盖检修等阶段,需要测料板摆出滤篮;这时,需要为这种拉簧结构配置气缸、油缸等驱动件,驱动件要一直给予拉簧反作用力,使拉簧长时间处于拉伸受力状态,从而使拉簧的性能迅速下降,需要定期更换新的拉簧。因此该类机械式的料层控制器存在检修量大、检修更换拉簧费时费力等弊端。



技术实现要素:

有鉴于此,本发明旨在提出一种离心机料层控制器,以提供一种可降低检修工作量的机械式料层控制器。

为达到上述目的,本发明的技术方案是这样实现的:

一种离心机料层控制器,用于检测离心机内滤篮中料层的厚度,包括安装于所述离心机的机盖上的壳体,以及可摆动地设于所述壳体上的测料部;所述离心机料层控制器还包括:

控制机构,设于壳体上,包括连接于所述测料部和所述壳体之间的扭簧、以及可调整所述扭簧的壳体连接端在所述壳体上的连接位置的调整部件;于所述壳体连接端被调整至测料位时,所述扭簧可驱使所述测料部摆向所述滤篮的内部,以于所述料层抵接;于所述壳体连接端被调整至闲置位时,所述扭簧可带动所述测料部摆出所述滤篮;

感应开关,安装于所述壳体上,且可构成对所述测料部摆动角度的检测。

进一步的,所述测料部包括可枢转地设于所述壳体上的轴杆,以及固设于所述轴杆位于所述离心机内部的一端、以与所述料层抵触的测料板。

进一步的,所述测料板被构造为向着所述料层凸起的弧面状。

进一步的,相对于所述轴杆位于所述离心机内部的一端,所述扭簧套设于所述轴杆位于所述壳体内的控制端。

进一步的,所述控制端上开设有供所述扭簧的测料部连接端插装的插槽。

进一步的,所述控制端上螺接有防止所述扭簧脱出的锁母。

进一步的,所述壳体上开设滑槽,所述壳体连接端可滑动地插设于所述滑槽内,所述滑槽的两端构成所述闲置位和所述测料位。

进一步的,所述闲置位和所述测料位位于以所述测料部的摆动轴线为圆心的同一弧线上;所述滑槽的滑移段环所述摆动轴线由所述闲置位向所述测料位延伸,并呈径向尺寸渐大的弧线形,且于末端弯折而与所述测料位连通,而使所述壳体连接端可钩挂于所述测料位上。

进一步的,所述调整部件包括被驱动而可往复移动的驱动板,所述驱动板与所述壳体连接端传动连接,以构成所述壳体连接端在所述壳体上连接位置的调整。

进一步的,所述驱动板上开设有拨动孔,所述壳体连接端穿经所述拨动孔,所述拨动孔的一段侧壁被配置为可随所述拨动孔的移动而将所述壳体连接端从所述测料位推出的推移部。

相对于现有技术,本发明具有以下优势:

本发明所述的离心机料层控制器,采用扭簧提供给测料部以摆动的驱使力,使测料部抵压在料层上检测厚度,在不需要检测料厚的阶段,利用调整部件调整移动壳体连接端至闲置位,并带动测料部摆出滤篮;这使得除测料厚时外,扭簧自身均不需要承受较大的扭转外力,使扭簧的使用性能稳定、使用寿命更长,从而可降低料层控制器的检修工作量。

同时,测料部设置轴杆和测料板,分别实现枢转和与料层接触的功能,整体结构更利于料层控制器的制造和使用性能的提高。测料板采用弧面形状,以可增大其与料层的接触面积,从而可避免测料板抵压在料层表面而划出深度过大的划痕,从而可提高检测的准确性。

此外,本发明利用滑槽的形式实现壳体连接端的位置滑移变化,便于加工,且适合与扭簧端部的连接配合。滑槽整体采用向外扩展的弧线状结构,和壳体连接端的移动轨迹相适合,调整部件将壳体连接端推移到测料位时,扭簧在钩挂状态下驱使测料部摆动测厚,调整部件将壳体连接端推至闲置位时,扭簧给予测料部一个反向力带动测料部摆出滤篮,从而使料层控制器处于闲置待机状态,整个过程扭簧和调整部件均无需长时间在过大的负荷下工作,利于料层控制器工作性能的稳定发挥,以进一步降低料层控制器的检修量。。

附图说明

构成本发明的一部分的附图,是用来提供对本发明的进一步理解,本发明的示意性实施例及其说明是用于解释本发明,其中涉及到的前后、上下等方位词语仅用于表示相对的位置关系,均不构成对本发明的不当限定。在附图中:

图1为本发明实施例所述的离心机的整体结构示意图;

图2为本发明实施例所述的离心机在机盖开启状态下的结构示意图;

图3为本发明实施例所述的料层控制器与滤篮的位置关系示意图;

图4为本发明实施例所述的离心机料层控制器的立体结构示意图;

图5为本发明实施例所述离心机料层控制器另一视角下的局部结构示意图;

图6为图5所示部件中部分组件的爆炸示意图;

图7为本发明实施例所述离心机料层控制器工作状态及位置示意图;

附图标记说明:

1、机体;10、滤篮;100、销轴;101、滤网;102、篮筐;103、篮筐内沿;2、机盖;3、进料管路;

4、料层控制器;40、壳体;41、测料部;41a、测料状态下的测料部;42、感应开关;43、控制机构;400、安装基座;401、外壁;402、安装孔;403、轴承座;404、滑槽;4041、闲置位;4042、滑移段;4043、测料位;410、轴杆;411、连杆;412、测料板;413、控制端;414、插槽;430、感应体;431、安装件;432、锁止件;433、锁母;434、扭簧;4341、测料部连接端;4342、壳体连接端;435、驱动板;436、油缸;440、拨动孔;441、推移部。

具体实施方式

需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。

在本发明的描述中,需要说明的是,若出现“上”、“下”、“内”、“背”等指示方位或位置关系的术语,其为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,若出现“第一”、“第二”等术语,其也仅用于描述目的,而不能理解为指示或暗示相对重要性。

下面将参考附图并结合实施例来详细说明本发明。

本实施例涉及一种离心机料层控制器,可降低机械式料层控制器的检修工作量。该离心机料层控制器用于检测离心机内滤篮中料层的厚度,包括安装在所述离心机的机盖上的壳体,以及可摆动地设于所述壳体上的测料部。

料层控制器还包括感应开关和控制机构,感应开关安装在所述壳体上,构成对所述测料部摆动角度的检测。

控制机构设于壳体上,包括连接于所述测料部和所述壳体之间的扭簧、以及可调整所述扭簧的壳体连接端在所述壳体上的连接位置的调整部件。

在所述壳体连接端被调整至测料位时,所述扭簧可驱使所述测料部摆向所述滤篮的内部,以于所述料层抵接;在所述壳体连接端被调整至闲置位时,所述扭簧可带动所述测料部摆出所述滤篮。

基于上述的设计思想,本实施例的离心机料层控制器的一种示例性结构如图1-5所示。

在本实施例中,以卧式离心机为例,当然,本实施例的离心机料层控制器也可应用于立式离心机上。

为便于理解,首先基于图1、图2和图3对离心机的大体结构加以说明。

离心机包括机体1和经过销轴100铰接安装在机体1上的机盖2,离心机运转时机盖2关闭,检修时打开机盖2。料层控制器4和进料管路3一般安装在机盖2上,在机体1内设有滤篮10,进料管路3的位于机体1内部的出料口对着滤篮10的内壁设置,将物料加入滤篮10内。

滤篮10被电机驱动可在机体1内高速旋转。滤篮10包括篮筐102和设于滤篮10侧壁上的滤网101,呈环状的篮筐102可阻挡滤篮10内的物料从两端面外流,篮筐102的篮筐内沿103为加入物料的上限位置。

如图3所示,在不需要测量滤篮10内物料的料层厚度时,测料部41摆出滤篮10,即图3中实线绘制的测料部41所在的位置,可容许机盖2打开,而测料部41和篮筐内沿103不会刮碰。在需要测量料厚时,测料部41被驱使到滤篮10内,如图3中虚线绘制的测料状态下的测料部41a所在的位置,该位置时,测料部41和料层接触,并随着料层的增厚,测料部41逐渐向着外摆移,至设定的角度位置,由感应开关42感应到,并将该感应信号发给离心机的控制单元,说明料厚到位,加料可结束。

如图3并结合图4、图5所示,本实施例的离心机料层控制器包括壳体40、感应开关42、控制机构43。其中,壳体40包括安装基座400和外壁401,安装基座400上设有安装孔402,用于壳体40在机盖2上的安装。在机盖2上开设有通孔,测料部41包括轴杆410、连杆411和测料板412,机盖2上的通孔供轴杆410穿过,安装基座400上固装有轴承座403,轴承座403上安装轴承,轴杆410安装于轴承上,以实现测料部41在壳体40上的可枢转摆动设置。

如上所述,轴杆410可枢转地设于壳体40的轴承座403上,在轴杆410位于离心机内部的一端固装有连杆411,连杆411的末端设有测料板412,测料板412用于与料层抵触。测料部41设置轴杆410和测料板412,分别实现枢转和与料层接触的功能,整体结构更利于料层控制器4的制造和使用性能的提高。

此外,为提高检测的准确性,测料板412被构造为向着料层凸起的弧面状,以可增大其与料层的接触面积,避免测料板412抵压在料层表面而划出深度过大的划痕。

如图5和图6所示,控制机构43设在壳体40上,包括连接在测料部41和壳体40之间的扭簧434、以及可调整扭簧434的壳体连接端4342在壳体40上的连接位置的调整部件。

具体而言,相对于轴杆410位于离心机内部的一端,扭簧434套设在轴杆410位于壳体40内的控制端413。将扭簧434套装在轴杆410的控制端413,两者间的弹性力和测料部41的摆动力方向匹配度高,利于提升料层控制器4的整体稳定性,且便于扭簧434的拆装检修。

为方便安装,控制端413上开设有供扭簧434的测料部连接端4341插装的插槽414。在控制端413上开设插槽414,在套装扭簧434时,扭簧434的测料部连接端4341随之插入插槽414内,实现扭簧434和测料部41的驱动连接;连接可靠性得到保障,且装配简单。

仍如图5所示,控制端413上螺接有防止扭簧434脱出的锁母433。为控制端413加装锁母433,在套装扭簧434后用锁母433实现上紧,将扭簧434夹持在壳体40和锁母433之间,从而可将扭簧434保持在其工作位置上,防止扭簧434移位或脱落。

基于上述的结构,壳体40上开设有滑槽404,具体地,可将滑槽404开设在轴承座403上。壳体连接端4342可滑动地插设于滑槽404内,滑槽404的两端构成闲置位4041和测料位4043。利用滑槽404的形式实现壳体连接端4342的位置滑移变化,便于加工,且适合与扭簧434端部的连接配合。

对于滑槽404的形状,优选地,闲置位4041和测料位4043位于以测料部41的摆动轴线为圆心的同一弧线上;滑槽404的滑移段4042环摆动轴线由闲置位4041向测料位4043延伸,并呈径向尺寸渐大的弧线形,且于末端弯折而与测料位4043连通,而使壳体连接端4342可钩挂于测料位4043上。

滑槽404整体采用向外扩展的弧线状结构,和壳体连接端4342的移动轨迹相适合,调整部件将壳体连接端4342推移到测料位4043时,扭簧434在钩挂状态下驱使测料部41摆动测厚,调整部件将壳体连接端4342推至闲置位4041时,扭簧434给予测料部41一个反向力带动测料部41摆出滤篮10,从而使料层控制器4处于闲置待机状态,整个过程扭簧434和调整部件均无需长时间在过大的负荷下工作,利于料层控制器4工作性能的稳定发挥,以进一步降低料层控制器4的检修量。

上述的调整部件,有多种形式可选,如采用拨杆、推板等形式,采用电机、气缸等驱动均可。在本实施例中,调整部件包括被驱动板435驱动而可往复移动的驱动板435,驱动板435与壳体连接端4342传动连接,以构成壳体连接端4342在壳体40上连接位置的调整。采用油缸、气缸等直行程驱动部件驱使的驱动板435驱使壳体连接端4342移位,实现其位置的调整,便于驱动板435在壳体连接端4342和滑槽404之间的装配。

此外,驱动板435上开设有拨动孔440,壳体连接端4342穿经拨动孔440,拨动孔440的一段侧壁被配置为可随拨动孔440的移动而将壳体连接端4342从测料位4043推出的推移部441。在驱动板435上开设拨动孔440,并在拨动孔440的侧边上设置相对于驱动板435的移动方向倾斜的推移部441,实现壳体连接端4342从测料位4043的钩挂状态脱离,回到滑移段4042,进而使壳体连接端4342随驱动板435移往闲置位4041,整体结构简单可靠,实现了高效的壳体连接端4342位置调整功能。

对于感应开关42,可以使接近开关或形成开关,安装在壳体40的外壁401上即可。为方便检测测料部41的摆动角度,如图6所示,在控制端413的端面上可安装感应体430,采用安装件431将感应体430的一端安装在控制端413的端面中心位置,锁止件432用于感应体430角度调整好后的紧固,安装件431和锁止件432均可使用螺钉、螺栓等常规部件。

采用上述实施方案的离心机料层控制器,如图7所示,当壳体连接端4342被调整至测料位4043时,扭簧434可驱使测料部41摆向滤篮10的内部,以于料层抵接,料层控制器4处于检测料层厚度的状态,如图7中的(b)。随着料层的增厚,料层驱使连杆411沿顺时针摆动,感应体430随之摆动,直到其与感应开关42正对,说明料厚到达设定值。感应开关42发出信号给离心机的控制单元,以停止加料。

之后,油缸436动作驱使驱动板435移动,拨动孔440的推移部441将壳体连接端4342从测料位4043推出,使壳体连接端4342沿着滑移段4042随驱动板435移动,当壳体连接端4342被调整至闲置位4041时,扭簧434由给予测料部41逆时针方向的摆动驱使力,转为给予测料部41顺时针方向的驱使力,从而带动测料部41摆出滤篮10,以使料层控制器4处于待机状态,如图7中的(a)所示。

本实施例所述的离心机料层控制器,使测料部41抵压在料层上检测厚度,在不需要检测料厚的阶段,利用调整部件调整移动壳体连接端4342至闲置位4041,并带动测料部41摆出滤篮10;这使得除测料厚时外,扭簧434自身均不需要承受较大的扭转外力,使扭簧434的使用性能稳定、使用寿命更长,从而可降低料层控制器4的检修工作量。

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1