一种海浪发电系统、海上平台以及氢能源基地的制作方法

文档序号:12651012阅读:499来源:国知局
一种海浪发电系统、海上平台以及氢能源基地的制作方法与工艺

本发明涉及能源利用技术领域,具体涉及一种海浪发电系统、海上平台以及氢能源基地。



背景技术:

随着世界经济的发展、人口的激增、社会的进步,人们对能源的需求日益增长。占地球表面积70%的广阔海洋,集中了97%的水量,蕴藏着巨大的能量,其中包括海浪能、潮汐能、海流能、温差能、盐差能等。其中,海浪能由于开发过程中对环境影响最小且以机械能的形式存在,是品位最高的海洋能。据估算,全世界海浪能的理论估值为109kW量级,是现在世界发电量的数百倍,有着广阔的商业前景,因而也是各国海洋能研究开发的重点。

人类探索海浪发电已有上百年的历史,其中欧美发达国家的海浪发电技术在世界上处于较为领先的地位。但海浪发电研究目前在商用化方面一直无法像火电、核电等一样普及。究其原因,就是因为海浪发电的成本远远高于其它发电方式,开发海浪发电没有商业价值。主要技术原因在于各类海浪发电都存在这样或那样的缺陷,仅适用于某些范围内的海浪的研究,没有实际利用价值;这是因为海浪变化巨大,现有装置无法适应如此巨大变化,只能获取其中一小部分适应装置工作的海浪能量,大部分海浪能无法获取。

海浪的能量虽然巨大,但是一直无法被很好的利用,其根本原因在于目前没有一种技术可以全部高效的利用各种大小的海浪能。现在的技术都只能利用其中一小部分海浪能,余下的绝大部分海浪能无法利用,导致海浪发电综合成本高,产出能量小,实际利用价值不高。另外,现有技术中还存在海 浪太小不能发电,海浪太大也不能发电的问题。只有对应设计大小的特定海浪才可以发电,这样大多数海浪能量都不能发电,都浪费了。而且由于过去的海浪发电技术投入大,产出太低,在经济上远远不及煤电、核电、水电成本低,所以目前全世界还没有大量投资海浪发电。



技术实现要素:

本发明所要解决的技术问题是针对现有技术的不足,提供一种海浪发电系统、海上平台以及氢能源基地。

本发明解决上述技术问题的技术方案如下:一种海浪发电系统,包括电能利用装置、发电装置和用于将变化海浪转化为稳定的海水波动的转化装置;所述发电装置与所述转化装置相连并接收所述海水波动进行发电,所述电能利用装置与所述发电装置相连以使所述发电装置产生的电能被用户利用。

本发明的有益效果是:本发明的海浪发电系统,将大小不同的海浪转化为稳定的海水波动,发电装置可以稳定高效的发电,使大小不同的海浪全部充分利用,包括其它发电装置不能利用的过大或过小的海浪,大大降低了发电成本,具有实用价值和巨大的经济效益。

在上述技术方案的基础上,本发明还可以做如下改进。

进一步,所述转化装置包括接收管和多根调节管,所述接收管的一端与所述调节管的一端固定相连且相互连通,所述接收管的另一端接收任意角度的变化海浪并将变化海浪输送至所述调节管内,所述调节管将变化海浪转化为稳定的海水波动;

所述发电装置为多个,每根所述调节管内至少安装一个发电装置,所述发电装置将所述海水波动转化为电能。

采用上述进一步方案的有益效果是:将大小不同的海浪转化为多个独立管道内的海水波动,并且每根独立的管道内部都是稳定幅度的波动,在稳定 波动的管道内,发电装置可以稳定高效的发电;通过在每根调节管内至少安装一个发电装置,可将每根调节管内的海浪动能充分利用。

进一步,每根所述调节管内均设有一个控制所述调节管和所述接收管是否连通的控制阀,所述控制阀位于所述发电装置和所述接收管之间。

采用上述进一步方案的有益效果是:通过在所述接收管内设置控制阀,可根据海浪的大小来控制调节管使用的个数,进而无论海浪大小,都能调节管内的海水波动变成适合发电机发电所需的波动,或者相当于海浪最大幅度状态发电,发电效率高。

进一步,所述发电装置包括水动能发电装置,所述水动能发电装置包括发电机和叶轮;所述叶轮的中心与所述发电机的电机轴固定相连;

海水在所述调节管内上下流动,驱动所述叶轮顺时针或逆时针转动,所述叶轮带动所述发电机转动进行发电。

采用上述进一步方案的有益效果是:通过采用发电机,可直接利用海水波动驱动发电。

进一步,所述发电装置还包括调节所述叶轮转向的转向控制器,用于控制所述叶轮与所述发电机之间的断开与连接;

所述叶轮内部含有可调节叶片角度的调节装置,用于根据海浪的大小和方向对所述叶轮中叶片的角度进行调节。

采用上述进一步方案的有益效果是:通过设置转向控制器,无论海水向上或向下流动,都能根据需要调整叶轮的转动方向,使得无论水流方向如何变化,发电机旋转方向不变;通过调节叶片角度的调节装置,可根据海浪大小和方向对所述叶轮中叶片角度进行调节,保证叶轮转速和方向稳定不变,使得发电机发电更加稳定。

进一步,所述发电装置包括螺杆式发电机、驱动螺杆和第一活塞,所述驱动螺杆远离所述接收管的一端与所述螺杆式发电机传动连接,所述驱动螺杆靠近所述接收管的一端与所述第一活塞固定相连,所述第一活塞滑动连接 在所述调节管的内壁上;

海水从所述接收管进入到所述调节管内并推动所述第一活塞沿所述调节管轴向运动,进而带动所述驱动螺杆运行,所述驱动螺杆驱动所述螺杆式发电机进行发电。

采用上述进一步方案的有益效果是:通过设置驱动螺杆和第一活塞,可利用海浪推动第一活塞,使得驱动螺杆在调节管内做活塞运动,进而带动发电机转动发电,结构简单,容易实现。

进一步,所述发电装置为气流发电机和风力驱动装置,所述风力驱动装置和所述气流发电机的电机轴相连;

海水流入所述调节管内时,所述调节管内海水上方的气流被海水推动带动风力驱动装置转动以驱动所述气流发电机进行发电。

采用上述进一步方案的有益效果是:发电装置脱离海水,更换维修容易,使用寿命长。

进一步,所述发电装置还包括第二活塞;所述调节管和/或所述接收管的内壁上滑动连接有一个第二活塞;海水推动所述第二活塞沿所述调节管或所述接收管轴向运动,所述第二活塞推动所述调节管内的海水或空气运动以驱动所述叶轮转动或所述第一活塞轴向移动或所述风力驱动装置转动,所述叶轮带动所述发电机发电,所述第一活塞带动所述螺杆式发电机发电,所述风力驱动装置驱动所述气流发电机发电。

采用上述进一步方案的有益效果是:通过设置第二活塞驱动海水波动,使海水动能利用率更高。

一种海浪发电方法,包括以下步骤:

S1,将变化海浪通过转化装置转化为稳定的海水波动;

S2,通过稳定的海水波动驱动发电装置进行发电;

S3,所述发电装置产生的电能通过传输电路传输至用户或用于电解水产生氢能源或转化为其它能源或其它电能驱动方式制取氢能源。

本发明的有益效果是:本发明的方法通过将大小不同的海浪转化为稳定的海水波动,发电装置可以稳定高效的发电,使大小不同的海浪全部充分利用,包括其它发电装置不能利用的过大或过小的海浪,大大降低了发电成本,具有实用价值和巨大的经济效益。

进一步,所述S1包括:通过接收管接收任意方向的变化海浪并将变化海浪输送至调节管内,所述调节管将所述变化海浪的振动幅度放大或缩小后转化为稳定的海水波动。

进一步,所述S1还包括:通过多个所述调节管内控制阀的打开个数和/或打开角度来控制流入到所述调节管内的海水的振动幅度;所述控制阀打开时,所述调节管与所述接收管相连通。

一种海上平台,包括多个以任意方式组合固定的所述海浪发电系统。

本发明的有益效果是:根据组合方式不同,海浪发电系统可大可小,发电量也可大可小,海浪发电系统的投资也可大可小,非常灵活,具有很大的实用价值,便于投资。另外海浪发电系统可以固定使用,也可以移动使用,甚至可以作为舰船或其它移动体的动力,实现舰船等移动体的自获动力而无需携带能源,甚至舰船等移动体本身的构造就是发电装置。

进一步,还包括一个或多个平台框架,所述平台框架呈一端封堵的筒状结构;

所述平台框架的内腔中和/或所述平台框架的外侧壁上至少安装有一个所述海浪发电系统,所述调节管沿所述平台框架的轴向布置,所述接收管从所述平台框架的敞口端伸出。

采用上述进一步方案的有益效果是:通过设置平台框架,可将海浪发电系统进一步组装起来,可根据需要构造成任意装置。由于平台具有浮力,可以作为船体结构、舰船的甲板、城市或岛屿的地面、海上漂浮的公路、码头等主体结构使用,本身是海浪发电设施同时又具有其它用途。也可以做海上救援基地、军事基地、旅游基地、工业基地、海洋养殖基地、体育训练基地、 科学基地、仓储基地、大学城、监狱基地等。由于用途多样,使海浪发电的成本与其它用途分担,进一步降低海浪发电的成本。

进一步,所述平台框架与所述调节管的外壁之间密封有用于为所述海上平台提供浮力的空气。

进一步,还包括多个支撑管,所述支撑管的一端一体连接在所述调节管远离所述接收管的一端上且与所述调节管相连通,所述支撑管的另一端抵接在所述平台框架的封堵端上;所述支撑管上开设有多个排气孔。

采用上述进一步方案的有益效果是:支撑管可以让海上平台可以承受巨大的压力,从而可以在海上平台上建设任何需要承重的项目。

一种氢能源基地,包括多个上述的海上平台,所述电能利用装置为电解水装置,所述海上平台和所述电解水装置电连接,所述电解水装置利用所述海上平台产生的电能对水进行电解分离产生氢能源。

本发明的有益效果是:地球3/4都是海洋,只有1/4的陆地,人们生活在陆地上,逐渐感到土地不足,能源匮乏、污染巨大,甚至引起战争以及有向太空移民的想法。本发明可以把人生活居住地向海洋扩展,可以增加3/4的使用面积,这比太空移民成本低的多,也现实的多。人类一直在寻找取代石油、煤炭、核能等的清洁能源,本发明在使国土面积增加的同时,使海浪发电系统产出的廉价电能大量的转化为氢能源,而“氢能源”是公认的世界上最好的、可以广泛使用的能源。本发明能产生巨量的氢能源,是唯一可行的廉价制取氢能源的方案,制取的氢能源可以供全球使用,从而彻底取代石油、煤炭、核能等能源,也是世界各国的战略资源,成为人类取之不尽用之不竭的环保能源。

附图说明

图1为本发明的海浪发电系统的工作流程图;

图2为本发明的发电装置的工作原理示意图一;

图3为本发明的发电装置的工作原理示意图二;

图4为本发明的发电装置的工作原理示意图三;

图5为实施方式一中调节管的的立体结构示意图;

图6为图4中A部的放大结构示意图;

图7为实施方式一中叶轮的立体结构示意图;

图8为实施方式二中调节管的立体结构示意图;

图9为图8中B部的放大结构示意图;

图10为实施方式三中气流发电机的工作原理示意图;

图11为本发明的海浪发电系统实施方式一的立体结构示意图;

图12为实施方式一中的海浪发电系统的底部结构示意图;

图13为本发明的海浪发电系统实施方式二的立体结构示意图;

图14为本发明的海浪发电系统实施方式三的立体结构示意图;

图15为本发明的海上平台的立体结构示意图;

图16为本发明的海上平台使用状态示意图一;

图17为本发明的海上平台使用状态示意图二。

附图中,各标号所代表的部件列表如下:

1、接收管;11、第一单元模块;12、第二单元模块;2、调节管;21、入水口;3、发电机;4、叶轮;41、外轮盘;42、内轮盘;43、连接轴;44、叶片;45、叶片轴;46、驱动电机;47、中间齿轮;48、驱动齿轮;5、螺杆式发电机;51、齿轮;6、驱动螺杆;61、第一活塞;7、气流发电机;8、风力驱动装置;9、平台框架;91、支撑管;92、排气孔;10、控制阀。

具体实施方式

以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。

实施例1

如图1-图15所示,本实施例的一种海浪发电系统,包括电能利用装置、发电装置和用于将变化海浪转化为稳定的海水波动的转化装置;所述发电装置与所述转化装置相连并接收所述海水波动进行发电,所述电能利用装置与所述发电装置相连以使所述发电装置产生的电能被用户利用。本实施例的海浪发电系统,将大小不同的海浪转化为稳定的海水波动,发电装置可以稳定高效的发电,使大小不同的海浪全部充分利用,包括其它发电装置不能利用的过大或过小的海浪,大大降低了发电成本,具有实用价值和巨大的经济效益。

如图1至图6所示,本实施例的所述转化装置包括接收管1和多根调节管2,所述接收管1的一端与所述调节管2的一端固定相连且相互连通,所述接收管1的另一端接收任意角度的变化海浪并将变化海浪输送至所述调节管2内,所述调节管2将变化海浪转化为稳定的海水波动;将大小不同的海浪转化为多个独立管道内的海水波动,并且每根独立的管道内部都是稳定幅度的波动,在稳定波动的管道内,发电装置可以稳定高效的发电;通过在每根调节管内至少安装一个发电装置,可将每根调节管内的海浪动能充分利用。

本实施例的所述发电装置为多个,每根所述调节管2内至少安装有一个发电装置,所述发电装置将所述海水波动转化为电能。每根所述调节管2内均设有一个控制所述调节管2和所述接收管1是否连通的控制阀10,所述控制阀10位于所述发电装置和所述接收管1之间。通过在所述接收管1内设置控制阀10,可根据海浪的大小来控制调节管使用的个数,进而无论海浪的大小,使得调节管内的海浪波动幅度正好处于发电机发电效率最高状态,发电效率高。

本实施例将变化的海浪通过调节管变成稳定的海水波动。在调节管2内,稳定的海水波动可以用来稳定的发电,发出来的电能可以通过传输电路输送 给用户,也可以转化为其它能量,以便进行运输和储存,比如转化为氢能进行储存。由于海浪变化无常,极不稳定,直接应用效果不好,储存起来可以获得稳定的能源,使用效果更好。

本实施例的发电装置可以是任何发电装置,以下举三种实施方式进行说明,具体如下所示。

实施方式一:如图6和图7所示,本实施方式的所述发电装置为水动能发电装置,它包括发电机3和叶轮4,所述发电机3的电机轴和所述叶轮4的中心轴线均沿所述调节管2的轴向布置;所述叶轮4的中心与所述发电机3的电机轴固定相连;海水在所述调节管2内上下流动,驱动所述叶轮4顺时针或逆时针转动,所述叶轮4带动所述发电机3转动进行发电。

如图7所示,本实施方式的所述发电装置还可以包括调节所述叶轮4转向的转向控制器,用于控制叶轮4与发电机3之间的断开与连接;所述叶轮4与所述发电机3的之间由转向控制器连接。通过设置转向控制器,无论海水向上或向下流动,都能根据需要调整两个反向的叶轮与发电机轴的连接方式,使两个叶轮其中一个与发电机的轴连接,另一个叶轮与发电机轴断开,以便保证发电机转动的方向不变,使得无论水流方向如何变化,都能保证发电机旋转方向不变。

如图7所示,本实施方式的所述叶轮4包括外轮盘41、内轮盘42、连接轴43、叶片44和叶片角度调节装置,所述外轮盘41和所述内轮盘42均成环筒状,所述外轮盘41套接在所述内轮盘42外侧,所述叶片44为多个且每个叶片44中部均固定有一根叶片轴45,所述叶片轴45的两端分别垂直转动连接在所述外轮盘41的内壁上和所述内轮盘42的外壁上;

如图7所示,本实施例的所述内轮盘42套接在所述连接轴43的外侧且与所述连接轴43之间留有安装空隙,所述叶片角度调节装置安装在所述安装空隙内,所述叶片角度调节装置的一端与所述连接轴43固定相连,其另一端与所述叶片轴45固定相连。

如图7所示,本实施方式的所述叶片角度调节装置包括驱动电机46和驱动齿轮组,所述驱动电机46与所述驱动齿轮组的一端固定相连,所述驱动齿轮组的另一端与所述叶片轴45固定相连。所述驱动齿轮组包括中间齿轮47和驱动齿轮48,驱动电机46驱动中间齿轮47转动,中间齿轮47带动驱动齿轮48转动,驱动齿轮48驱动所述叶片轴45转动。当调节管2内海水流速变化的时候,对应的叶片角度也发生相应变化,通过设置叶片角度调节装置从而使得叶轮转动速度更稳定,进而使得发电机稳定发电,发电效率更高,获得的电能更多。

实施方式二:如图8和图9所示,本实施方式的所述发电装置包括螺杆式发电机5、驱动螺杆6和第一活塞61,所述驱动螺杆6远离所述接收管1的一端与所述螺杆式发电机5传动连接,所述驱动螺杆6靠近所述接收管1的一端与所述第一活塞61固定相连,所述第一活塞61滑动连接在所述调节管2的内壁上;海水从所述接收管1进入到所述调节管2内并推动所述第一活塞61沿所述调节管2轴向运动,进而带动所述驱动螺杆运行,所述驱动螺杆6驱动所述螺杆式发电机5进行发电。通过设置驱动螺杆和活塞,可利用海浪推动活塞,使得驱动螺杆在调节管内做活塞运动,进而带动发电机转动发电,结构简单,容易实现。

如图9所示,本实施例的所述螺杆式发电机5的电机轴的四周套接固定有齿轮51,所述螺杆式发电机5的电机轴与所述驱动螺杆6垂直布置且所述齿轮与所述驱动螺杆6的螺纹啮合;所述驱动螺杆6轴向移动时,带动所述螺杆式发电机5的电机轴转动。

实施方式三:如图10所示,本实施方式的所述发电装置包括气流发电机7和风力驱动装置8,所述风力驱动装置8和所述气流发电机7的电机轴相连;海水流入所述调节管2内时,所述调节管2内海水上方的气流被海水推动带动风力驱动装置8转动以驱动所述气流发电机7进行发电。

本实施方式的所述风力驱动装置可以为任意能够接受风能并驱动所述 气流发电机转动的驱动装置。

本实施例中,如图10所示,当海浪大小发生变化时,本实施例也可通过调节控制阀10的角度变化来控制流入调节管2中的海水流量,来实现调节管2中海水幅度的稳定。总之,按照图2,图3,图4,图5等可以分别衍生或组合出各种方式,可以变形出各种控制、发电方式,都属于本发明保护范围。

除了上述实施方式的结构外,上述实施方式的所述发电装置还可包括第二活塞,如图2-图5所示,所述第二活塞可滑动连接在所述调节管2或所述接收管1的内壁上,或所述调节管2和所述接收管1中各有一个第二活塞;海水推动所述第二活塞沿所述调节管2或所述接收管1轴向运动,所述第二活塞推动所述调节管2内的海水或空气运动以驱动所述叶轮4转动或所述第一活塞61轴向移动或所述风力驱动装置8转动,所述叶轮4带动所述发电机3发电,所述第一活塞61带动所述螺杆式发电机5发电,所述风力驱动装置8驱动所述气流发电机发电。

本实施例的海浪发电系统可以适应各种大小海浪,无论多大的海浪都能全部转化为稳定的海浪能量,然后充分利用,也包括其它技术无法利用的海浪。使得本实施例的海浪发电系统可以实现低成本投资而高效产出,其成本低于煤电、油电、核电和水电等,这样就提高了投入产出比,使得海浪发电成本降低,使海浪发电具有巨大的商业开发价值,并且根据需求投资可大可小,非常实用。利用本实施例的海浪发电系统直接用来电解水,制取氢能源,由于氢能源的可持续性和环保,未来可以取代石油、煤炭和核电等,成为未来世界的廉价、环保和永久性的清洁能源。

本实施例利用调节管,可将小幅度的波浪放大成大幅度的波浪,满足发电机的需求,以达到发电机的最大发电效率。具体如图2-图4所示,调节管和接收管相连,调节管和接收管中均充满海水,接收管用于接收海浪,调节管用于调节海浪。当海浪上下波动时,可以将接收管中的海水波动幅度等效 为大海的海水波动幅度。接收管的横截面积为S1,其内海水上下运动速度为V1,海水波动幅度为A1,调节管的横截面积为S2,调节管内海水上下运动速度为V2,海水波动幅度为A2。海浪向上波动时,接收管中海水向上流动进入到调节管中,为了便于理解,可以把接收管和调节管中的海水截面S1和S2理解为两个等效活塞,两个活塞之间充满了海水,由于海水不可压缩,接收管中的海水进入到调节管中后维持体积不变,即:S1V1t=S2V2t,S1V1=S2V2(其中t是时间)。因此,我们可以得到以下公式:通过改变S1/S2的比例就可以改变速度V2/V1的放大倍数,通过改变A2/A1的放大倍数,使得无论多小幅度的海浪都可以放大为可利用的大幅度的海浪。

例如在进行结构设计的时候,假设大海中海浪振幅A1最小为Amin,最大时为Amax。通过设计调节S1/S2的大小,可以使得调节管内海浪振幅A2和Amax相同,这样即使最小的海浪也能放大为持续的最大海浪,使放置在调节管内的发电机达到最大的发电效果,这就解决了因为海浪小,海水运动速度低而不易被利用的特性,也解决了较小幅度海浪的发电问题。另外,由于发电机也有一定的横截面,使得调节管的横截面积S2进一步缩小,此时的水流放大倍数会被进一步放大,海浪的利用效率将进一步得到提高。

本实施例将大小幅度不同的海浪分别转化为多个调节管中较为稳定的振幅波动,使得各种大小的海浪全部被充分利用,并进行发电。

如图3所示,本实施例可以根据需求使一根接收管对应多根调节管,将多根调节管分别命名为调节管a、b、c...等,每根调节管内均放置有发电机和控制阀。当海浪的幅度从最小向最大逐渐增大时,为了使调节管内的水流速度V2稳定在一个值,调节管的控制阀打开的数量也相应增加;当海浪波动幅度逐渐减小时,则打开的控制阀数量减少。假设每根调节管的截面积相同,共有n根调节管,这就相当于将一个幅度A1的海浪分解成n个独立的管道中的海水波动,而分解后的每个管道内海水波动幅度A2稳定。分解的 管道数量n随着海浪A1大小而变化,比值不变。即S2a=S2b=S2c…=S2n,S2=n×S2a

因为所以当不变时,不变。由于 比值不变,所以海浪A1大则分解数量n大,海浪A1小则分解数量n就小。海浪A1的幅度对应n的大小。

这就把变化的海浪转化为稳定的海浪,将波浪大小变化转化为管道数量多少的变化,这类似于数学微分的思路。

把大小不同的海浪转化为多个独立管道内的海水波动,并且每根独立管道内都是稳定幅度的波动,在稳定波动的管道内水动能发电机可以稳定高效发电。这样无论海浪大小都可以高效利用发电,使大小不同的海浪全部充分利用,从而实现大小不同的海浪能的全部高效利用。

实际设计可以有多种方法,这里举例说明一种设计方法:见图2,图中关系为:设计时我们假设大海中海浪振幅A1在最小时候为Amin,最大时候为Amax。通过设计调节S1/S2大小,使海浪处于最小振幅Amin时,调节管a中的海浪振幅A2与Amax相同,即当海浪处于最小振幅Amin时调节管a中的水动能发电机也能达到最大海浪振幅时的发电效果。当海浪幅度逐渐增大时,调节管b、c等的控制阀依次打开,相当于S2逐步增大,S2随着海浪的增大而逐步增大,以保持a、b、c等每根调节管道中水流的波动幅度A2保持在Amax稳定不变,每根调节管中的水动能发电机都可以一直处于最大海浪状态进行发电,十分的高效。通过拆分海浪,可以使不同大小的海浪对应不同数量管道,而工作的水动能发电机一直在最大海浪状态下发电,从而把海浪能从小到大全部高效利用。

本实施例可以使全部调节管加起来的截面积S2与接收管的截面积S1相 当。当海浪达到最大时,每根所述调节管内的控制阀均打开,此时S1=S2,A1=A2=Amax,调节管不再放大,而每一个管道都处于最大海浪状态。

总之,无论海浪大小,调节管内都相当于海浪最大幅度状态发电,所以效率非常高;而当海浪逐步减小时,只是关闭控制阀使得水动能发电机数量减小,而工作的水动能发电机仍处于最大海浪发电状态。

本实施例的每根调节管的结构是按最大海浪高度设计,所以即使海浪幅度达到最大,发电机工况仍然不变,仍然可以高效率发电。即使海浪最小时候也能通过减小S2面积来达到海浪最大状态的运动,发电机工况仍然不变。海浪从最小到最大变化的时候,通过调节管a、b、c等中的控制阀调节,S2中打开控制阀的调节管中海水上下波动始终保持不变。这样无论海浪大小,其携带的能量都能全部高效并以恒定效率地转化为电能。

如图4所示,本实施例可以通过增加调节管的数量来增加S2,使得S1和S2的比例可以任意变化。图4中,增加了调节管j、k、l、m、n、o等。当海浪高度超出设计范围时,可以打开调节管j、k、l、m、n、o等的控制阀,增加调节管的数量,使得S2>S1,调节管从放大作用变成缩小作用,反过来使海浪幅度缩小,原理与放大一样。

本实施例通过放大或缩小海浪振幅,把变化幅度的海浪转化为较为稳定的上下流动海水的方法,较稳定的上下海水流动可以高效稳定的发电,使最小、最大以及各种海浪都转化为可以高效利用的能量。

本实施例可以将多根调节管以各种形式集合在一体,形成各种单元模块,再以各种单元模块为基本单位进行组合,实现海浪发电以及其他各种功能。数量众多的调节管集合在一体,就像蜂巢一样机械强度极大,所以能够经受住巨大的台风冲击和海浪冲击,也能够作为公路、陆地、机场、航母、舰船等的主体结构,这些坚固的主体结构也可以作为承载平台,也可以配上电解水装置来打造氢能源基地。

本实施例的调节管和接收管的结构有多种实施方式,举例说明其中三 种,分别如下。

实施方式一:如图11和图12所示,将多根调节管2排列固定成第一单元模块11,该第一单元模块11的一端形成一个锥形空腔,该锥形空腔即为接收管1,即多根所述调节管2排列后的一端构成了一个接收管1;每根所述调节管2的入水口处围成了所述接收管1,接收管1用于接收海浪。每根所述调节管2的入水口的方向可以相同,也可以不同。例如,纵向布置的入水口主要吸收海浪的纵向波动能,横向布置的入水口主要吸收海浪的横向波动能。海浪的波动能从入水口进入到调节管内后,根据海浪幅度大小以及发电机的最高效率发电所需的海浪幅度大小来调节控制阀的开启数量,使发电机维持高效发电。在实际操作中,由于本实施方式的接收管为锥形结构,每根所述调节管内的控制阀可以从中心开始向外一圈一圈逐步打开,也可以采用其他形式打开。本实施方式的发电机和控制器应尽量设置在调节管内靠近入水口的位置处。

实施方式二:如图13所示,本实施方式将多根调节管2排列固定成第二单元模块12,第二单元模块12的入水口21均横向布置,本实施方式可在第二单元模块12的外部包覆一个接收管1,接收管1用于接收流入到入水口的海水的横向波动,使入水口主要吸收海水的横向波动能来实现发电功能。

实施方式三:如图14,本实施方式可将第一单元模块11和第二单元模块12进行任意形式的组合,例如将第一单元模块11外侧设置多个第二单元模块12,这样就可接收任意方向的海浪波动。

实施例2

本实施例的一种海浪发电方法,包括以下步骤:

S1,将变化海浪通过转化装置转化为稳定的海水波动;

S2,通过稳定的海水波动驱动发电装置进行发电;

S3,所述发电装置产生的电能通过传输电路传输至用户或用于电解水产生氢能源或转化为其它能源或其它电能驱动方式制取氢能源。

本实施例的S1包括:通过接收管接收任意方向的变化海浪并将变化海浪输送至调节管内,所述调节管将所述变化海浪的振动幅度放大或缩小后转化为稳定的海水波动。

本实施例可通过多个所述调节管内控制阀的打开个数或打开角度来控制流入到所述调节管内的海水的振动幅度;所述控制阀打开时,所述调节管与所述接收管相连通。

本实施例的海浪发电方法通过将大小不同的海浪转化为稳定的海水波动,发电装置可以稳定高效的发电,使大小不同的海浪全部充分利用,大大降低了发电成本,具有实用价值和巨大的经济效益。

实施例3

如图15所示,本实施例的一种海上平台,包括一个或多个平台框架9和多个实施例1所述的海浪发电系统,所述平台框架9呈一端封堵的筒状结构;所述平台框架9的内腔中和/或所述平台框架9的外侧壁上至少安装有一个所述海浪发电系统,所述调节管2沿所述平台框架9的轴向布置,所述接收管1从所述平台框架9的敞口端伸出,另外所述平台框架9与所述调节管2的外壁之间也可以密封有空气,起到浮力的作用。本实施例的海上平台可根据需要选择组装平台框架9的个数和大小,当需要类似航母类大型装置时,可采用多个平台框架9进行搭建。

本实施例的海浪发电系统还包括多个支撑管91,所述支撑管91的一端一体连接在所述调节管2远离所述接收管1的一端上且与所述调节管2相连通,所述支撑管91的另一端抵接在所述平台框架9的封堵端上;所述支撑管91上开设有多个排气孔92。支撑管91可以让海上平台可以承受巨大的压力,从而可以在海上平台上建设任何需要承重的项目。

本实施例的电能利用装置可以为电解水装置,可将海上平台作为氢能源基地使用。本实施例也可作为舰船的甲板、城市或岛屿的地面、公路、码头等主体结构。平台框架9的使用可以有无限的可能性。可将大量的第一单元 模块11相互组合后,再将第二单元模块12固定在第一单元模块11周围,并在第一单元模块11和第二单元模块12组合体外头罩上一个大型的平台框架9,第一单元模块11、第二单元模块12和平台框架9之间有一个大型的密闭空间,可使第一单元模块11和第二单元模块12形成一个巨大的海上漂浮平台。海上漂浮平台配上电解水装置,能产生氢能源,就能够实现自我能量补给,甚至成为一个能量补给站,向外提供能源;也可以作为整个平台自己的动力能源,推动平台的运动。当第一单元模块11和第二单元模块12数量非常多时候,可以使平台大到足以实现飞机的起落,就可以作为航母来进行应用;或者大到可以容纳一个城市的人口时,可以作为海上人工岛或者海上城市的平台使用。而当第一单元模块11和第二单元模块二12数量减少时,也可以用作舰船等使用。当平台在氢能源的动力推动下运动时,就可以使平台追随台风移动,以获得最大海浪能量。

图16是模块单元组合构成公路或地面的案例之一。在此案例中,第一单元模块11和第二单元模块12按照需求相互组合,组成整体外形类似于建筑的砖形式的长方体或正方体或其它形状的模块。如图16所示,这些由第一单元模块11和第二单元模块12构成的像建筑的砖一样的模块再相互组合成码头、漂浮的陆地、城市或者岛屿等。城市之间的海上高速公路、码头、漂浮的陆地、城市、航母、舰船、海岸、岛屿或者其它地方,都可以由海浪发电模块构成,所以发电量巨大。所有的模块都可以加装制氢装置来制取并储存氢能源,可以自用及对外界提供能量。

如图17所示,第一单元模块11、第二单元模块12和平台框架9,还可以形成漂浮的陆地方格,陆地方格全部由各种单元模块构成,可以提供海浪发电以及氢能源;方格内可以做海水养殖,可以为生活在这个漂浮陆地上的生物提供足够的食物。方格陆地上可以建住房、工厂、学校等。因为这里有足够的食物以及足够的能源,完全可以实现自给自足,甚至还能向外输出能源和食物,这样人类就可以离开大陆向海洋开发永久居住地,从而扩大地球 土地面积,扩大国家的国土面积,从而使更多的人有宽松的生存环境。由于漂浮的城市可以自己获得能源及动力,可以随着气候移动,例如冬季去南方夏季去北方,使这个城市四季如春,没有污染。也可以做海上救援基地、军事基地、旅游基地、工业基地、海洋养殖基地、体育训练基地、科学基地、仓储基地、大学城、监狱基地等,总之有无限多种用途。

地球3/4都是海洋,只有1/4的陆地,人们生活在陆地上,逐渐感到土地不足,污染巨大,甚至有向太空移民的想法。本发明可以把人生活居住地向海洋扩展,可以增加3/4的使用面积,这比太空移民成本低的多,也现实的多。本发明可以使国土面积增加的同时,吸收了海浪的能量,使海上城市更加稳定安全,同时使海浪发电系统产出的电能廉价大量的转化为氢能源,产量巨大的氢能源可以供全球使用,从而彻底取代石油、煤炭、核能等能源,成为人类取之不尽用之不竭的环保能源。

以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1