基于频率响应的水轮机PID型调速器参数设计方法与流程

文档序号:16581512发布日期:2019-01-14 18:00阅读:423来源:国知局
基于频率响应的水轮机PID型调速器参数设计方法与流程
本发明属于电网安全
技术领域
,涉及一种水轮机pid型调速器参数设计方法,具体涉及一种基于电力系统频率响应的多运行方式下多机电力系统水轮机pid型调速器参数设计方法。
背景技术
:交流系统超低频振荡现象在国内、外实际电网运行中均有发现,具有持续时间长、振荡频率极低(小于0.1hz)的特点,威胁系统安全稳定运行。自从云南电网与南方电网主网异步联网后,云南电网也出现了超低频振荡现象。已有研究对超低频振荡问题的机理做了较为深入的剖析,发现水电机组在超低频段内无法为系统提供足够的阻尼转矩,超低频振荡与系统中的水电机组一次调频关系密切。抑制超低频振荡最简单且有效的手段是切除水电机组调速器,然而切除调速器会降低机组跟踪负荷波动的性能,只能作为应急手段。调速器参数设计需综合考虑系统稳定性与调节性能,且应能应对多运行方式下电力系统的稳定需求。如何克服现有技术的不足是目前电网安全
技术领域
亟需解决的问题。技术实现要素:本发明的目的是为了解决现有技术的不足,提供一种抑制超低频振荡问题的水轮机调速器参数设计方法,该方法兼顾了系统的稳定性要求与调节性能要求,不需要推导系统的传递函数,而仅依靠测量得到的系统频率响应数据。为实现上述目的,本发明采用的技术方案如下:1、基于频率响应的水轮机pid型调速器参数设计方法,包括以下步骤:1)建立含有系统主要发电机组在内的统一频率模型;2)选择调速器参数设计的目标电厂机组;3)扫频测量得到各个运行方式下统一频率模型的开环频率响应数据;4)根据3)得到的统一频率模型的开环频率响应数据,求解各个运行方式下考虑系统稳定约束的参数解空间s1;5)根据3)得到的统一频率模型的开环频率响应数据,求解各个运行方式下考虑调节性能约束的参数解空间s2;6)根据4)得到参数解空间s1的和5)得到的参数解空间s2,求解各个运行方式下同时考虑系统稳定与调节性能的参数解空间s;7)根据6)得到参数解空间s,求解多运行方式下同时考虑系统稳定与调节性能的参数解空间sm;8)基于参数解空间sm设计调速器参数。进一步,优选的是,所述的步骤1)中的建立含有系统主要发电机组的统一频率模型步骤:(1)统计系统所含发电机组调速器和原动机模型的类型以及它们各自占系统总容量的比例;(2)对超低频振荡发生时各电厂机组有功功率振幅从大到小排列,选择排列在第一个或前几个的电厂机组单独建模;将各类型调速器和原动机模型按照其各自占系统总容量的比例从大到小排序,选择其中占比最大的1~4种模型搭建于统一频率模型中;(3)对于(2)中选定的调速器和原动机模型,将其参数设置为系统中出力最大的该类型机组的参数;同时按照以下方式设置统一频率模型中各类型机组的台数:统计各类型机组在系统中的总有功出力,则统一频率模型中各类型机组的台数等于其在系统中的总有功出力除以它的单台有功出力;(4)根据系统自动发电控制的安排设置统一频率模型中参与自动发电控制的机组台数:将统一频率模型中参与自动发电控制的机组台数设置为系统中参与自动发电控制的机组总有功出力除以单台机组的有功出力的值。进一步,优选的是,所述的步骤2)中的选择调速器参数设计的目标电厂机组步骤:(1)计算所有单独建模电厂机组的阻尼系数md;对第i台机组,其阻尼系数mdi为:其中,re()为取实部运算,gti(s)为电厂机组调速器-原动机传递函数,s为拉普拉斯算子,j为虚数单位,ωc为振荡频率,单位为rad/s;(2)对于阻尼系数md从小到大排列,选择排列在第一个或前几个的电厂机组为调速器参数设计目标电厂机组。进一步,优选的是,所述的步骤3)中的扫频测量得到各个运行方式下统一频率模型的开环频率响应数据步骤:在统一频率模型中,将除调速器参数设计目标电厂机组调速器以外的系统统一为开环系统p(s);通过扫频测量得到各个运行方式下统一频率模型的开环频率响应数据,即p(s)的频率响应数据,其中,p(s)的频率响应数据包括p(s)的幅频特性数据|p(jω)|与相频特性数据∠p(jω)。进一步,优选的是,所述的步骤4)中的求解各个运行方式下考虑系统稳定约束的参数解空间s1步骤:(1)目标电厂调速器与开环系统p(s)构成的反馈系统闭环稳定的等价条件为:回差矩阵行列式f(s)=1+(kp·s+ki+kd·s2)/s·p(s)不存在右半平面的零点,其中,kp、ki、kd为pid调速器待设计参数;(2)定义开环系统p(s)的相移数为σ=(∠p(j∞)-∠p(-j∞))/(π/2);(3)定义开环系统p(s)的相对次数为(4)将kp参数离散采样得到[kp1,kp2,…,kpn];定义如下函数:对于每一个kp采样点,根据上式函数曲线求解的奇数重根集为{ω1,ω2,...,ωl-1};(5)定义并求解如下序列:i={i1,i2,...,il-1}其中,it∈{+1,-1},t=1,2,...,l-1;如果rp-1是偶数,求解如下序列:[2i1-2i2+2i3+…+(-1)l-12il-1]·sx=-σ-2如果rp-1是奇数,求解如下序列:[2i1-2i2+2i3+…+(-1)l-12il-1]·sx=-σ-2(6)对于求得的第k条序列ik={i1,k,i2,k,...,il-1,k},求得如下参数解空间:由上式可知每条序列ik对应的解空间是由线性约束构成的解空间,记为再将所有序列的解空间求并集就得到考虑系统稳定的解空间其中u为求并集运算。进一步,优选的是,所述的步骤5)中的求解各个运行方式下考虑调节性能约束的参数解空间s2步骤:(1)电力系统调节性能的约束条件描述如下:||w(s)s(s)||∞<1其中:w(s)为性能权函数,s(s)为系统的灵敏度函数,其表达式如下:式中:s为拉普拉斯算子,m为灵敏度函数峰值上界,ωb*为带宽频率下界,a为最大稳态跟踪误差;该约束条件等价于目标电厂调速器与如下定义的复系数传递函数pc(s,θr)构成的反馈系统闭环稳定:对θ进行采样得到样本集[θ1θ2…θm],即对于每一个样本θr,目标电厂调速器与pc(s,θr)构成的反馈系统的回差矩阵行列式f(s)=1+(kp·s+ki+kd·s2)/s·pc(s,θr)不存在右半平面的零点;(2)定义pc(s,θr)的相移数为σ=(∠pc(j∞,θr)-∠pc(-j∞,θr))/(π/2);(3)定义pc(s,θr)的相对次数为(4)将kp参数离散采样得到[kp1,kp2,…,kpn];定义如下函数:对于每一个kp采样点,根据上式函数曲线求解的奇数重根集为{ω1,ω2,...,ωl-1};(5)定义并求解如下序列:i′={i′1,i′2,...,i′l-1}其中,i′t∈{+1,-1},t=1,2,...,l-1;求解如下序列:[2i′1-2i′2+2i′3+…+(-1)l-12i′l-1]]·sx=-σ-2(6)对于求得的第k条序列i′k={i′1,k,i′2,k,...,i′l-1,k}可求得如下参数解空间:由上式可知每条序列i′k对应的解空间是由线性约束构成的解空间,记为再将所有序列的解空间求并集就得到θr对应的解空间其中∪为求并集运算;(7)将根据(6)求得的所有θr对应的解空间求交集就得到考虑系统调节性能约束的解空间其中∩为求交集运算。进一步,优选的是,所述的步骤6)中的求解各个运行方式下同时考虑系统稳定与调节性能的参数解空间s=s1∩s2;进一步,优选的是,所述的步骤7)中的求解多运行方式下同时考虑系统稳定与调节性能的参数解空间sm为各个运行方式下解空间s的交集。进一步,优选的是,所述的步骤8)中的基于参数解空间sm设计调速器参数步骤:根据得到的解空间sm,设置目标函数为maxkp·ki,进行求解,所得到的kp、ki、kd为最终的水轮机调速器设计参数。进一步,优选的是,利用matlab自带的函数fmincon求解maxkp·ki。本发明中m为灵敏度函数峰值上界,根据稳定要求设置;ωb*为带宽频率下界,根据跟踪性能要求设置;a为最大稳态跟踪误差,设置为很小值,如0.0001。本发明与现有技术相比,其有益效果为:本发明提出的方法可以应对多运行方式下电力系统水轮机pid型调速器参数设计问题,参数设计过程不需要推导系统的传递函数,而仅依靠扫频测量得到的统一频率模型的开环频率响应数据,能够给出所有满足系统的稳定与调节性能约束的线性参数解空间,再通过给定的参数目标函数maxkp·ki,将水轮机调速器参数设计问题转化为一个简单易求解的非线性规划问题,设计调速器参数。该方法是pid型调速器控制参数设计的有力工具,且从未应用于解决超低频振荡问题。附图说明图1是本发明实施例流程图;图2是本发明实施例提供的统一频率模型;图3是本发明实施例提供的仿真验证中云南电网统一频率模型;图4是本发明实施例提供的仿真验证中gs型汽轮机调速器模型结构图;图5是本发明实施例提供的仿真验证中tb型汽轮机模型结构图;图6是本发明实施例提供的仿真验证中gm型水轮机调速器模型结构图;图7是本发明实施例提供的仿真验证中ga型电液伺服系统模型结构图;图8是本发明实施例提供的仿真验证中水轮机详细模型结构图;图9是本发明实施例提供的仿真验证中gh型调速器和tw型水轮机模型结构图;图10是本发明实施例提供的云南电网冬大运行方式下ldl机组调速器除外的开环系统p(s)的频率响应曲线;图11是本发明实施例提供的云南电网冬大运行方式下考虑系统稳定约束的参数解空间s1;图12是本发明实施例提供的云南电网冬大运行方式下考虑系统调节性能约束的参数解空间s2;图13是本发明实施例提供的云南电网冬大运行方式下同时考虑系统稳定与调节性能约束的参数解空间s;图14是本发明实施例提供的7个方式下同时考虑系统稳定与调节性能的参数解空间sm;图15是本发明实施例提供的设计参数与原始参数的时域仿真结果对比。具体实施方式下面结合实施例对本发明作进一步的详细描述。本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限定本发明的范围。实施例中未注明具体技术或条件者,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用材料或设备未注明生产厂商者,均为可以通过购买获得的常规产品。在本发明实施例中,提供了基于频率响应的水轮机pid型调速器参数设计方法,如图1所示,该方法包括:步骤101:建立含有系统主要发电机组在内的统一频率模型;步骤102:选择调速器参数设计的目标电厂机组;步骤103:扫频测量得到各个运行方式下统一频率系统的开环频率响应数据;步骤104:求解各个运行方式下考虑系统稳定约束的参数解空间s1;步骤105:求解各个运行方式下考虑调节性能约束的参数解空间s2;步骤106:求解各个运行方式下同时考虑系统稳定与调节性能的参数解空间s=s1∩s2;步骤107:求解多运行方式下同时考虑系统稳定与调节性能的参数解空间sm为各个方式下解空间s的交集;步骤108:基于参数解空间sm设计调速器参数。由图1所示的流程可知,在本发明实施例中,通过建立含有系统主要发电机组调速器和原动机模型的统一频率模型,可以实现对原系统超低频振荡的模拟;通过扫频测量得到各个运行方式下统一频率系统的开环频率响应数据,作为参数设计的基础;通过求解各个运行方式下考虑系统稳定约束的参数解空间s1,获得满足稳定要求的pid调速器参数空间;通过求解各个运行方式下考虑调节性能约束的参数解空间s2,获得满足调节性能要求的pid调速器参数空间;通过将s1与s2求交集求得各个运行方式下同时考虑系统稳定与调节性能的参数解空间s;通过将各个运行方式下的解空间s求交集,获得多运行方式下同时考虑系统稳定与调节性能的参数解空间sm;基于参数解空间sm,设计得到调速器参数。(1)具体实施时,统计南方电网2017冬大、冬小、夏大、夏大极限、夏小、夏小外送、汛期方式中云南电网的机组数据和潮流计算结果的基础上,建立统一频率模型。按照之前所述步骤,在matlab/simulink软件中建立统一频率模型如图2所示。以冬大方式为例,上述的统一频率模型建立遵循如下步骤:1)方式数据中火电出力为3977.2mw,水电出力为32559mw。2)根据实际监测数据,电厂机组(nzd,ldl,xw,dcs)在振荡发生期间有功功率振幅从大到小排列排在最前,故单独建模,,采用gm型调速器模块、ga型伺服器模块以及水轮机详细模型模块。对于火电机组,典型机组类型为gs(包含gs型调速器模块与tb型汽轮机模块)。对于水电机组,典型机组类型为gh(gh模型内本身包含调速器与原动机)和gm(包含gm型调速器模块、ga型伺服器模块以及水轮机详细模型模块)。单独建模电厂机组总出力为7885mw,gs型机组总出力为3977.2mw,gh型机组总出力为7717mw,gm型机组总出力为16957mw。3)对于2)中选定的调速器和原动机模型,将其参数设置为全系统中出力最大的该类型机组的参数,具体如下:对于单独建模电厂机组,nzd电厂机组功率基值为722.3mw,在其自身功率基值下机组惯性为10.38。其所含gm型调速器模型如图4所示,模式选择为开度模式、硬反馈输入信号为ypid,参数如表1。表1tr10.02td0.2kw2.9t10kp2t20kd1tr20.02ki0.37ep0.04其所含ga型伺服模型如图5所示,参数如表2。表2tc11.4kd0to18.5ki0t20.02td0kp10其所含水轮机详细模型如图6所示,图中水系统传递函数f(s)为其中,其中,tep为压力水管弹性时间常数,ts为调压室时间常数,twc为引水洞水击时间常数,twp为压力水管水击时间常数,zp为压力水管水阻抗,φc为引水洞摩擦系数,φp为压力水管摩擦系数,s为拉普拉斯算子。参数如表3。表3ldl电厂机组功率基值为400mw,在其自身功率基值下机组惯性为9.61。其所含gm型调速器模型如图4所示,模式选择为开度模式、硬反馈输入信号为ypid,参数如表4。表4其所含ga型伺服模型如图5所示,参数如表5。表5tc9.35kd0to23ki0t20.2td0kp15其所含水轮机详细模型如图6所示,图中水系统传递函数f(s)为其中,其中,tep为压力水管弹性时间常数,ts为调压室时间常数,twc为引水洞水击时间常数,twp为压力水管水击时间常数,zp为压力水管水阻抗,φc为引水洞摩擦系数,φp为压力水管摩擦系数,s为拉普拉斯算子。参数如如表6。表6xw电厂机组功率基值为778mw,在其自身功率基值下机组惯性为8.72。其所含gm型调速器模型如图4所示,模式选择为开度模式、硬反馈输入信号为ypid,参数如表7。表7tr10.02td0.21kw1.35t10kp2t20kd1tr20.02ki0.375ep0.04其所含ga型伺服模型如图5所示,参数如表8。表8tc10kd0to13.1ki0t20.02td0kp6其所含水轮机详细模型如图6所示,图中水系统传递函数f(s)为其中,其中,tep为压力水管弹性时间常数,ts为调压室时间常数,twc为引水洞水击时间常数,twp为压力水管水击时间常数,zp为压力水管水阻抗,φc为引水洞摩擦系数,φp为压力水管摩擦系数,s为拉普拉斯算子。参数如表9。表9dcs电厂机组功率基值为250mw,在其自身功率基值下机组惯性为9.63。其所含gm型调速器模型如图4所示,模式选择为开度模式、硬反馈输入信号为ypid,参数如表10。表10tr10.2td0.3kw1.8t10kp4t20kd0tr20.02ki0.048ep0.04其所含ga型伺服模型如图5所示,参数如表11。表11tc21.5kd0to22.5ki0t20.2td0kp40其所含水轮机详细模型如图6所示,图中水系统传递函数f(s)为其中,其中,tep为压力水管弹性时间常数,ts为调压室时间常数,twc为引水洞水击时间常数,twp为压力水管水击时间常数,zp为压力水管水阻抗,φc为引水洞摩擦系数,φp为压力水管摩擦系数,s为拉普拉斯算子。参数如表12。表12对于典型机组gs,功率基值为353mw,在其自身功率基值下机组惯性为8.5。其所含gs型调速器模型如图7所示,tb型汽轮机模型如图8所示,参数如表13。表13k18.47trh8t10fip0.4t20tco0.4t30.5flp0.3tch0.3λ0fhp0.3对于典型机组gh,功率基值为109mw,在其自身功率基值下机组惯性为8.31。其所含gh型机组模型如图9所示,参数如表14。表14r0.04tw1tg0.25dd0.25tp0.04k’1td5对于典型机组gm,功率基值为667mw,在其自身功率基值下机组惯性为10.38。其所含gm型调速器模型如图4所示,模式选择为开度模式、硬反馈输入信号为ypid,参数如表15。表15tr10.2td0.21kw1.7t10kp2.5t20kd1tr20.02ki0.5ep0.04其所含ga型伺服模型如图5所示,参数如表16。表16tc13kd0to13ki0t20.2td0kp20其所含水轮机详细模型如图6所示,图中水系统传递函数f(s)为其中,其中,tep为压力水管弹性时间常数,ts为调压室时间常数,twc为引水洞水击时间常数,twp为压力水管水击时间常数,zp为压力水管水阻抗,φc为引水洞摩擦系数,φp为压力水管摩擦系数,s为拉普拉斯算子。参数如表17。表17冬大方式下,单独建模电厂(nzd,ldl,xw,dcs)机组台数分别为6,3,4,5台,总出力为7885mw。由于gs型典型机组出力为240mw,总出力为3977.2mw,因此gs型典型机组台数为3977.2/240≈17台。由于gh型典型机组出力为95mw,总出力为7717mw,因此gh型典型机组台数为7717/95≈81台。由于gm型典型机组出力为600mw,总出力为24842-7885=16957mw,因此gm型典型机组台数为16957/600≈28台。4)agc增益kagc=1。参与agc的机组类型为gh型和gm型,其台数ngh-agc为20台,ngm-agc为2台。故最终冬大方式统一频率模型中台数参数如表18。表18ngs17nagc-gh20ngh81nagc-gm2ngm28nnzd6nldl3nxw4ndcs5(2)具体实施时,计算单独建模电厂机组的阻尼系数md:nzd为-2.28,ldl为-1.08,xw为-1.40,dcs为2.45。选择阻尼系数md从小到大排列的前三个电厂机组(nzd,ldl,xw)作为调速器参数设计的目标机组。根据云南电网的方式数据,限定各个设计参数范围为0<(knzdp,kldlp,kxwp)<5、0<(knzdi,kldli,kxwi)<1、0<(knzdd,kldld,kxwd)<3。(3)具体实施时,根据以下方法扫频测量各个运行方式下统一频率模型的开环频率响应数据:1)在统一频率模型中,将除调速器参数设计目标电厂机组调速器以外的系统统一为开环系统p(s)。2)通过将s=jω代入p(s)扫频测量得到p(s)的频率响应数据,其中包括p(s)的幅频特性数据|p(jω)|与相频特性数据∠p(jω)。以云南电网冬大运行方式为例,ldl机组调速器除外的开环系统p(s)的频率响应数据如图10所示。(4)具体实施时,利用以下方法求解各个运行方式下考虑系统稳定约束的参数解空间s1:以云南电网冬大运行方式为例,ldl机组pid型调速器参数为待设计参数。1)ldl电厂pid型调速器与开环系统p(s)构成的反馈系统闭环稳定的等价条件为:回差矩阵行列式f(s)=1+(kp·s+ki+kd·s2)/s·p(s)不存在右半平面的零点,其中,kp、ki、kd为pid调速器待设计参数;2)以采样点kp=0为例,ω的奇数重根集{-0.8244,-0.3138,0,0.3138,0.8244}。3)对于kp=0,求得的序列i仅有一条序列,为{1,-1,1,-1,1}。4)对于求得的序列i={1,-1,1,-1,1}生成的参数解空间如下:上式即为kp=0时考虑系统稳定的解空间。再求得所有kp采样点对应的解空间,即考虑系统稳定约束的参数解空间s1。求解得到的云南电网冬大运行方式下考虑系统稳定约束的参数解空间s1如图11所示;(5)具体实施时,利用以下方法求解各个运行方式下考虑调节性能约束的参数解空间s2:以云南电网冬大运行方式为例,ldl机组pid型调速器参数为待设计参数。1)常见的考虑电力系统调节性能的约束条件描述如下;||w(s)s(s)||∞<1其中:w(s)为性能权函数,s(s)为系统的灵敏度函数,其表达式如下:式中:s为拉普拉斯算子,m=1.5,ωb*=0.0001,a=0;2)上述约束条件等价于ldl电厂调速器与如下复系数传递函数pc(s,θr)构成的反馈系统闭环稳定,对θ进行采样得到样本集[θ1θ2…θm],即对于每一个样本θr,ldl电厂调速器与pc(s,θr)构成的反馈系统的回差矩阵行列式f(s)=1+(kp·s+ki+kd·s2)/s·pc(s,θr)不存在右半平面的零点。接下来以样本点θ=0.3307为例。3)以kp=0为例,ω的奇数重根集为{-0.7515-0.3118,0,0.3155,0.9055}。4)对于kp=0求得的序列i仅有一条序列,为{1,-1,1,-1,1}。5)对于求得的序列i={1,-1,1,-1,1}可生成额参数解空间如下:上式即为θ=0.3307、kp=0时考虑系统性能的解空间。利用上步骤将所有的θ样本点对应的解空间求交集,即得到kp=0时考虑系统性能的解空间。再求得所有kp采样点对应的解空间,就得到了考虑系统性能约束的解空间s2。求解得到的云南电网冬大运行方式下考虑系统性能约束的参数解空间s2如图12所示;(6)具体实施时,通过对云南电网各个运行方式下的s1和s2求交集得到云南电网冬大方式下各个运行方式下同时考虑系统稳定与调节性能的参数解空间s如图13所示。(7)具体实施时,通过对各个运行方式下的解空间s求交集得到云南电网多运行方式下同时考虑系统稳定与调节性能的参数解空间sm如图14所示。(8)具体实施时,通过以下方法基于参数解空间sm设计ldl机组调速器参数:1)由于上述线性约束构成的解空间sm,选择目标函数为maxkp·ki,问题转化为一个简单的非线性规划问题。2)利用matlab自带的函数fmincon即可求解上述优化模型,得到待设计的水轮机调速器参数如表19所示。再利用前述步骤,逐次整定得到nzd以及xw的调速器参数如表19所示。表19图15显示了时域仿真结果,展示了系统设计参数比原始参数增强了系统的稳定性并且提升了调速器的调节性能。以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1