电功率控制方法与流程

文档序号:31440338发布日期:2022-09-07 09:41阅读:195来源:国知局
电功率控制方法与流程

1.本公开涉及用于混合动力车辆的电功率控制系统和方法。更具体地但非排他地,本公开涉及控制电加热催化器的电负载以抵消其他车辆部件的瞬态电负载。


背景技术:

2.在混合动力车辆(诸如混合动力电动车辆(hev)或轻度混合动力电动车辆(mhev))中,期望支持一系列附件负载,例如12v dc-dc转换器。在一些情况下,来自附件的瞬态需求可非常大(几千瓦),并且可超过混合动力车辆的牵引电池的瞬态功率容量。在这种情况下,针对瞬态电气附件负载可能会超过电池功率极限,这可能导致车辆的电力系统关闭、附加的电池老化和/或混合动力车辆的牵引总线上的过度电压瞬态负载,从而导致部件损坏或部分关闭。在一些情况下,牵引总线可以是高压(hv)总线,诸如hev的350v总线或mhev的48v总线。
3.一种解决方案是通过设计或使用动态控制方法来限制附件的电负载,使得它们不能被允许以动态方式消耗功率。然而,这并不总是可行的,因为需要一些附件来满足其他要求,诸如低压(lv)(例如,12v)质量,并且因此只能遵守直到某个点的瞬态约束。此外,在一些用例中,牵引总线上的电压纹波可能会降低或抑制被从牵引总线供电的负载的功能,所述负载包括但不限于dc-dc转换器、逆变器、压缩机、泵和/或加热系统。


技术实现要素:

4.本文提供了用于例如通过使用电加热催化器的电负载来抵消瞬态功率事件来改进对混合动力车辆的电气系统的控制的系统和方法。
5.根据本文提供的系统和方法的一些示例,确定所述车辆的辅助部件的电负载的变化。在一些示例中,辅助部件可以是高压(例如,48v、350v或任何其他适当的电压)辅助部件。在一些示例中,高压辅助部件可以是混合动力车辆的高压电路的部件,诸如空调压缩机、动力转向泵或加热系统的部件。在一些示例中,高压辅助部件可以被配置为依靠ac电源运行,并且因此可能对变化的状况作出缓慢反应,这可能导致hv电路上的一个或多个电压瞬变。响应于确定辅助部件的电负载的变化,调整(例如,增加或减小)车辆的附件(例如,电加热催化器)的电负载。例如,可以调整电气附件的电负载以控制车辆的高压电路的功率,例如车辆的高压电池的功率输出/功率输入。在本公开的上下文中,术语“功率”被理解为意指由高压电路的一个或多个部件(例如,高压电池)供应和/或供应至其的功率。例如,当向一个或多个其他部件(诸如牵引马达和/或辅助部件)供应电功率时,电池可以具有正功率。当从一个或多个其他部件(诸如发电机和/或另一个电功率存储部件)接收电功率时,电池可能具有负功率。正电功率和负电功率的定义在本公开的上下文中是有用的,从以下描述和附图(当描述去往和来自电池的功率流,尤其是与和该电池交互的一个或多个其他部件的功率相关)将变得明显。应当理解,相同的惯例适用于电动马达-发电机,例如,当马达-发电机用作马达时,例如,当向车辆的动力传动系统输送功率时,马达-发电机的功率为正,并
且当马达-发电机用作发电机时,例如,当向车辆的电池输送功率时,马达-发电机的功率为负。
6.在一些示例中,电气附件可以是混合动力车辆的任何适当的附件,其可以使用线性控制算法来控制,例如,使得它与使用非线性控制方法的其他电气附件相比具有快速功率响应。
7.在一些示例中,响应于确定辅助部件的电负载的变化,可以调整车辆的马达-发电机的功率。在一些示例中,响应于车辆的马达-发电机的输出的变化,可以进一步调整车辆的电加热催化器的电负载。
8.在一些示例中,可以调整车辆的马达-发电机的输出以控制车辆的高压电池的功率输出。
9.在一些示例中,可以与马达-发电机的输出被调整的速率对应的速率来进一步调整电加热催化器的电负载。
10.在一些示例中,确定辅助部件的电负载的变化包括确定辅助部件的电负载的增加。在一些示例中,调整车辆的电加热催化器的电负载包括减小车辆的电加热催化器的电负载。
11.在一些示例中,确定辅助部件的电负载的变化包括确定辅助部件的电负载的减小。在一些示例中,调整车辆的电加热催化器的电负载包括增加车辆的电加热催化器的电负载。
12.在一些示例中,调整车辆的电加热催化器的电负载以减小对车辆的高压电池的功率输入以遵守电池充电极限。在一些示例中,对车辆的高压电池的功率输入减小到小于或等于充电功率极限的功率。
13.在一些示例中,调整车辆的电加热催化器的电负载以减小车辆的高压电池的功率输出以遵守电池放电极限。在一些示例中,将车辆的高压电池的功率输出减小到小于或等于放电功率极限的功率。
14.在一些示例中,使用线性控制算法来调整电加热催化器的电负载,这意味着例如电加热催化器的输出与其请求的输入成比例。
15.在一些示例中,确定hv电池与hv总线的连接状态,例如,接触器断开的故障连接状态。响应于确定hv电池与hv总线断开连接,可以调整车辆的附件(例如,电加热催化器)的电负载。在一些示例中,当hv电池与hv总线断开连接时,调整车辆的电加热催化器的电负载以平衡车辆电力网的总功率是有益的,因为hv电池在断开连接状态下不能抑制电压纹波。
16.应将理解,根据附图和详细描述的公开,本公开的其他特征、方面和变型将是明显的。另外,将进一步理解,用于控制电气附件的方法和系统的另外的或替代的示例可以在本公开阐述的原理内实施。
附图说明
17.结合附图考虑以下具体实施方式,本公开的上述和其他目的和优点将变得明显,在附图中:
18.图1示出了根据本公开的一些示例的用于混合动力车辆的电功率控制系统。
19.图2示出了根据本公开的一些示例的用于混合动力车辆的电功率控制方法的示例
性流程图。
20.图3示出了根据本公开的一些示例的用于混合动力车辆的电功率控制方法的示例性流程图。
21.图4示出了根据本公开的一些示例的示出对瞬态负载移除的响应的各种曲线图。
22.图5示出了根据本公开的一些示例的用于混合动力车辆的电功率控制方法的示例性流程图。
23.图6示出了根据本公开的一些示例的示出对瞬态负载引入的响应的各种曲线图。
24.图7示出了根据本公开的一些示例的具有用于混合动力车辆的电功率控制系统的示例性混合动力车辆。
25.图8示出了根据本公开的一些示例的控制单元的示例性框图。
26.本文中的附图仅出于说明的目的描绘了所公开的公开的各个示例。应当理解,另外的或替代的结构、系统和方法可以在本公开阐述的原理内实施。
具体实施方式
27.图1示出了表示用于混合动力车辆的电功率控制系统100(以下称为控制系统)的框图。在图1所示的示例中,控制系统100用于轻度混合动力电动车辆(mhev),所述轻度混合动力电动车辆具有联接到马达-发电机(例如,带传动集成式起动机(bisg)104)的发动机102。bisg 104电耦合到包括hv电池/总线106、一个或多个hv电路部件(诸如dc-dc转换器108和/或逆变器)以及电加热催化器(ecat)110的高压(hv)(例如,48v、350v和/或任何其他适当电压)电路,所述电加热催化器被配置为帮助减少从发动机102流到排气口112的排气中的碳氢化合物和no
x
排放物。在图1所示的示例中,dc-dc转换器108电耦合到低压(lv)(例如,12v)总线/电池114,所述低压总线/电池被配置为向车辆的一个或多个lv附件供应电功率。
28.在图1所示的示例中,控制系统100包括控制器116,例如动力传动系统控制模块(pcm),其与发动机102、bisg 104、hv电池/总线106、dc-dc转换器108和ecat 110中的每一者操作通信。然而,本公开不限于图1所示的设置。例如,控制器116可以是任何适当类型的控制器,诸如独立控制器,或混合动力车辆的任何其他适当控制器。例如,控制器可以至少部分地与车辆的另一个控制器(诸如dc-dc转换器108的控制器)集成。此外,控制器116可以被配置为与图1所示的车辆部件中的任何一个或多个和/或车辆的任何其他适当部件操作地通信。例如,控制器116可以是被配置为与至少一个hv附件、电动马达-发电机和ecat可操作地通信以控制hv电池的电功率输出的独立控制器。
29.虽然图1所示的示例例示了用于mhev的控制系统100的使用,但是应当理解,控制系统100可以在具有一个或多个hv电路部件和ecat的适当类型的混合动力车辆(诸如插电式混合动力电动车辆(phev))上实施。
30.图1所示的系统100被配置为控制混合动力车辆的hv电池的电功率输出,使得hv电池尽可能地保持在其操作功率极限(例如,充电和放电极限)内。在一些情况下,在hv电路上引入(瞬态)电负载可能导致hv电池的电功率在其操作功率极限之外的水平下操作。常规系统和方法通过调整混合动力车辆的马达发电机的功率输出以增加或减小hv电池的功率以尝试将hv电池的功率恢复到其操作功率极限内来对瞬态电负载作出反应。然而,虽然马达
发电机能够对电功率瞬变作出反应,但是其高惯性、高电感和通信等待时间可能导致将hv电池的功率返回到其操作功率极限内的延迟反应。
31.本公开提供了控制供应给ecat的功率以抵消来自其他部件(诸如hv附件)的瞬态负载变化的电功率控制系统和方法。例如,如果ecat消耗一定量的功率,例如1kw,并且另一附件增加其负载,例如1kw,则可以将ecat负载减小到例如0w,以便抵消由于另一附件的瞬态负载(“导通瞬态”)引起的短期增加。在一些示例中,可以遵守hv电池/总线106的功率容量的速率和/或在bisg 104作出反应时调整供应给ecat的功率以控制另一附件的瞬态负载。
32.以类似的方式,如果ecat消耗一定量的功率,例如1kw,并且另一附件减小其负载,例如1kw,则可以增加ecat负载,以便抵消由于另一附件的瞬态负载(“断开瞬态”)引起的短期减少。换句话说,“断开瞬态”(这通常在dcdc或逆变器负载内更难以管理)可以被短暂地吸收在ecat内。因此,在另一附件的不受控制的负载断开时,短暂地开启ecat以确保hv电池/总线106上的连续功率消耗。随后,ecat 110可以以受控的方式减少,从而遵守总线的动态能力。
33.图2是根据本公开的一些示例的表示用于控制混合动力车辆的电功率的说明性过程200的流程图。虽然图2所示的示例是指如图1所示的系统100的使用,但将了解,可以在系统100上或在任何其他适当地配置的系统架构上实施图2所示的说明性过程和任何其他以下说明性过程。
34.在步骤202处,例如使用控制器116的控制电路来确定混合动力车辆的辅助部件的电负载的变化。例如,控制器可以被配置为确定混合动力车辆的一个或多个hv附件的电负载的变化。在一些示例中,一个或多个hv附件的电负载的变化可以是瞬态负载,诸如一个或多个hv附件的导通瞬态或断开瞬态。在本公开的上下文中,术语hv附件被理解为意指被配置为向混合动力车辆的hv总线/电池106汲取和/或供应功率的任何附件,诸如dc-dc转换器108、逆变器和/或任何其他hv电路部件。在一些示例中,hv总线/电池和一个或多个hv电路部件可以被配置为使用48v进行操作,但是可以使用任何其他适当的电压,例如,这取决于混合动力车辆的配置。
35.在步骤204处,响应于确定辅助部件的电负载的变化,例如使用控制器116的控制电路来确定车辆的ecat的电负载的变化。例如,可以暂时增加或减少ecat的电负载以抵消一个或多个hv附件的瞬态负载,以确保hv总线/电池106上的总电负载尽可能保持在hv总线/电池106的操作极限内。例如,在hv电池容许的功率窗口之外的更短的操作时段可导致使hv电池功率切断的风险最小化。例如,hv电路的一个或多个部件(诸如hv电池、hv总线和/或其他hv部件)可以具有电压极限(例如,最大电压),高于所述电压极限,它们就会停止工作和/或产生故障。另外或替代地,hv电路的一个或多个部件可以具有电压波动极限,例如电压变化(或变化率)极限,高于所述电压波动极限,它们就会停止工作和/或产生故障。因此,可以增加或减少ecat的电负载,以确保hv电路上的总电负载保持在电压极限内和/或电压波动极限内。
36.在一些示例中,减少的hv电池循环可以减少电池老化,这可以使得具有较小容量的较小电池能够满足车辆寿命要求。因此,这可以降低总成本并改善包装。功率极限窗口之外的任何hv电池功率骤增的持续时间的最小化可以将hv电力网电压保持在范围内。将hv电
力网电压保持在范围内可以保证电力网的电气消耗装置(例如,dc-dc转换器108)的正确性能。另外或替代地,可能不需要切断hv附件功率来保护hv电池免受瞬变,这使得hv附件功率能够维持在其最大操作水平。另外或替代地,本文公开的功率管理策略的使用可以用于支持总线纹波管理,特别是在电池(及其电容)例如由于电池保护策略而不再连接到系统的用例中。另外或替代地,在电压纹波变得太大的情况下,可以以类似的方式使用ecat 110来消耗来自hv总线的功率以尝试管理电压纹波。
37.图2的动作或描述可以与本公开的任何其他示例一起使用,例如,下面关于图3至图6描述的示例。另外,关于图2描述的动作和描述可以以任何合适的替代顺序或并行地完成以促进本公开的目的。
38.图3示出了根据本公开的一些示例的表示用于控制混合动力车辆的电功率的说明性过程300的流程图。图4示出了说明对瞬态负载移除的响应的各种曲线图。具体地,图4示出了根据本公开的一些示例的常规系统对瞬态负载移除的响应(参见曲线图402a、404a、406a和408a),以及系统对瞬态负载移除的响应(参见曲线图402b、404b、406b和408b)。虽然图3和图4所示的示例是指如图1所示的系统100的使用,但将了解,可以在系统100上或在任何其他适当地配置的系统架构上实施分别在图3和图4中示出的说明性过程和响应。为避免疑义,在以下示例中,参考图4所示的曲线图,正电池功率值被理解为意指从电池供应的功率,例如,用于牵引目的,并且负电池功率值被理解为意指供应给电池的功率,例如,用于再生目的。以类似的方式,来自马达发电机的负功率输出被理解为意指从马达发电机供应的电功率,例如用于再生目的。
39.曲线图402a、404a、406a和408a示出了使用常规方法的混合动力车辆的电功率控制系统的响应。例如,曲线图402b示出了从时间t=1秒开始供应给hv附件的大约4.5kw的功率下降到0.5kw,其在这种情况下定义了断开瞬态。
40.曲线图408a示出了hv电池响应于hv附件的电负载的减小的功率。例如,hv电池的功率从时间t=1秒开始从0kw下降到-4kw。在这种情况下,在供应给hv附件的功率下降之后,hv电池的功率下降到hv电池的充电功率极限阈值之外的值。
41.曲线图406a示出了电动马达-发电机通过减少对hv电池的电功率输出以补偿402a中所示的hv附件功率的下降来对hv附件功率断开瞬态作出反应。然而,马达-发电机通常具有高惯性、高电感和通信等待时间,其导致对hv附件功率断开瞬态的响应被延迟。例如,曲线图406a示出了从时间t=1.5秒处开始马达-发电机的功率输出从大约-4.5kw增加到-0.5kw。
42.响应于马达-发电机减小其电功率输出,总hv电池功率增加(例如,功率输入减小)。例如,再次参考曲线图408a,hv电池的功率从时间t=1.5秒开始从-4kw增加到0kw。在这种情况下,hv电池的功率在电动马达-发电机的反应之后增加到hv电池的充电功率极限内的值。然而,hv电池被示出为已超过其充电功率极限达约1.5秒的时段。由功率瞬变引起的hv电池的这种循环可能导致hv电池的过早劣化,这可能导致电池功率切断和hv系统操作的随后中断。重要的是,曲线图404b示出了由于hv附件功率的下降而没有来自ecat的响应,并且ecat在瞬态负载事件期间保持停用。
43.曲线图402b、404b、406b和408b示出了实施过程300的系统100的响应。
44.在步骤302处,控制器116被配置为确定混合动力车辆的hv附件(例如,dc-dc转换
器108)的电负载的减小。例如,控制器116可以确定dc-dc转换器108的电负载已经下降。曲线图402a示出了在时间t=1秒处开始并且在时间t=1.1秒处结束,供应给hv附件的大约4.5kw的功率下降至0.5kw。
45.在步骤304处,控制器116致使ecat 110的电负载增加。例如,响应于确定供应给hv附件的功率下降,控制器116可以使ecat 110的负载成比例地增加。在曲线图404b中所示的示例中,供应给ecat的功率在时间t=1.1秒处开始并且在时间t=1.15秒处结束从0kw增加到4kw,此时hv附件功率停止下降并稳定在大约0.5kw。然而,在替代示例中,一旦检测到hv附件功率的下降,ecat 110的反应就可以发生,并且可以随着hv附件功率的继续变化而继续进行调整。在一些示例中,以线性方式控制ecat的功率。例如,控制器116可以发出对ecat 110的特定功率输出的请求,并且在实施线性控制函数的情况下,ecat实现所请求的功率输出的响应时间可以非常短。在使用常规控制方法(诸如脉冲宽度调制(pwm)控制)的情况下,ecat 110的实际功率输出可以不使得ecat 110能够提供导致hv电池功率根据需要增加的响应的方式进行控制。
46.参考曲线图408b,hv电池功率最初以与上述曲线图408a相同的方式作出响应,例如,hv电池功率从0kw初始减小到-4kw(例如,到hv电池的功率输入增加)。然而,ecat 110的电负载的增加导致hv电池的功率快速增加到车辆的hv电池的充电功率极限内的功率。例如,hv电池的功率在时间t=1秒与t=1.1秒之间从0kw下降到-4kw(例如,对电池的功率输入增加),但是在时间t=1.1秒与t=1.15秒之间快速上升回到0kw(例如,对电池的功率输入减少)。以这种方式,由于ecat对hv总线功率平衡的快速贡献,在充电功率极限之外的hv电池功率骤增的持续时间被最小化。
47.在步骤306处,控制器116使得bisg 104通过减少对电池的电功率输出以补偿hv附件功率的下降来对曲线图402b中所示的hv附件功率断开瞬态作出反应。然而,如上所讨论,马达-发电机通常具有高惯性、高电感和通信等待时间,其导致对hv附件功率断开瞬态的响应被延迟。例如,曲线图406b示出了在时间t=1.5秒处开始并且在时间t=1.6秒处结束,bisg 104的功率从大约-4.5kw增加到-0.5kw(例如,对电池的功率输出减少)。然而,在这种情况下,并且与408a中所示的常规系统的反应不同,hv电池106的总功率不会由于bisg 104的功率增加而直接改变。
48.在步骤308处,响应于bisg 104的功率的增加,控制器116致使ecat 110的电负载减小。例如,响应于确定bisg 104的功率的增加,控制器116可以使ecat 110的负载以与bisg 104的输出增加的速率对应的速率成比例地减小。在曲线图404b中所示的示例中,供应给ecat的功率在时间t=1.5秒处开始并且在时间t=1.6秒处结束从4kw减小到0kw,此时bisg 104的功率停止增加并稳定在大约-0.5kw。以这种方式,控制ecat 110以补偿bisg 104的增加的功率,这导致hv电池在其操作极限内的稳定输出。重要的是,以这种方式控制ecat 110允许在系统100等待bisg 104响应时将总hv电池功率保持在操作极限内。换句话说,将ecat 110功率引入hv电池功率平衡中,以最小化hv电池功率骤增在容许的功率窗口之外的持续时间。
49.图3和图4的动作或描述可以与本公开的任何其他示例一起使用,例如,下面关于图5和图6描述的示例。另外,关于图3描述的动作和描述可以以任何合适的替代顺序或并行地完成以促进本公开的目的。
50.图5示出了根据本公开的一些示例的表示用于控制混合动力车辆的电功率的说明性过程500的流程图。图6示出了说明对瞬态负载引入的响应的各种曲线图。具体地,图6示出了根据本公开的一些示例的常规系统对瞬态负载引入的响应(参见曲线图602a、604a、606a和608a),以及对瞬态负载引入的响应(参见曲线图602b、604b、606b和608b)。虽然图5和图6所示的示例是指如图1所示的系统100的使用,但将了解,可以在系统100上或在任何其他适当地配置的系统架构上实施分别在图5和图6中示出的说明性过程和响应。为避免疑义,在以下示例中,参考图4所示的曲线图,正电池功率值被理解为意指从电池供应的功率,例如,用于牵引目的,并且负电池功率值被理解为意指供应给电池的功率,例如,用于再生目的。以类似的方式,来自马达发电机的负功率输出被理解为意指从马达发电机供应的电功率,例如用于再生目的。
51.曲线图602a、604a、606a和608a示出了使用常规方法的混合动力车辆的电功率控制系统的响应。例如,曲线图602b示出了从时间t=1秒开始供应给hv附件的功率从大约0.5kw增加到5kw,其在这种情况下定义了导通瞬态。
52.曲线图608a示出了hv电池响应于hv附件的电负载的增加的功率。例如,由于hv附件负载功率的增加,hv电池的功率从时间t=1秒开始从0kw增加(例如,来自电池的功率输出增加)到4.5kw。在这种情况下,在供应给hv附件的功率增加之后,hv电池的功率增加到hv电池的放电功率极限之外的值。
53.曲线图606a示出了电动马达-发电机通过增加其充电功率以补偿602a中所示的hv附件功率的增加来对hv附件功率导通瞬态作出反应的功率。然而,马达-发电机通常具有高惯性、高电感和通信等待时间,其导致对hv附件功率导通瞬态的响应被延迟。例如,曲线图606a示出了从时间t=1.5秒处开始马达-发电机的功率从大约-2.5kw减小到-7kw(例如,对电池的功率输出增加)。
54.响应于马达-发电机减小其电功率,hv电池功率减小。例如,再次参考曲线图608a,hv电池的功率从时间t=1.5秒开始从-4.5kw减小到0kw。在这种情况下,hv电池的功率在电动马达-发电机的反应之后减小到hv电池的放电功率极限以下的值。然而,hv电池被示出为已超过其充电功率极限达约1.5秒的时段。由功率瞬变引起的hv电池的这种循环可能导致hv电池的过早劣化和/或hv电池功率切断。重要的是,曲线图604b示出了由于hv附件功率的下降而没有来自ecat的响应,并且ecat在瞬态负载事件期间将其功率输出保持在2kw。
55.曲线图602b、604b、606b和608b示出了实施过程500的系统100的响应。
56.在步骤502处,控制器116被配置为确定混合动力车辆的hv电路部件(例如,dc-dc转换器108)的电负载的增加。例如,控制器116可以确定dc-dc转换器108的电负载已经增加。曲线图602a示出了在时间t=1秒处开始并且在时间t=1.1秒处结束,供应给hv附件的功率从大约0.5kw增加至5kw。
57.在步骤504处,控制器116使ecat 110的电负载例如从ecat的当前操作电负载减小。例如,响应于确定供应给hv附件的功率增加,控制器116可以使ecat 110的负载成比例地减小。在曲线图604b中所示的示例中,ecat在消耗功率,例如,由于混合动力车辆的一个或多个操作参数,并且供应给ecat的功率在时间t=1.1秒处开始并且在时间t=1.15秒处结束从2kw减小到0kw,此时hv附件功率停止增加并稳定在大约5kw。然而,在替代示例中,一旦检测到hv附件功率的增加,ecat 110的反应就可以发生,并且可以随着hv附件功率的继
续变化而继续进行调整。在一些示例中,以线性方式控制ecat的功率输出。例如,控制器116可以发出对ecat 110的特定功率输出的请求,并且在实施线性控制函数的情况下,ecat实现所请求的功率输出的响应时间可以非常短。在使用常规控制方法(诸如脉冲宽度调制(pwm)控制)的情况下,ecat 110的实际功率输出可以不使得ecat 110能够提供导致hv电池功率以期望方式减小的响应的方式进行控制。
58.参考曲线图608b,hv电池功率最初以与上述曲线图608a相同的方式作出响应,例如,hv电池功率从0kw初始增加到4.5kw。然而,ecat 110的电负载的减小导致hv电池的功率快速减小到等于车辆的hv电池的放电功率极限的功率。例如,hv电池的功率在时间t=1秒与t=1.1秒之间从0kw增加到4.5kw,但是在时间t=1.1秒与t=1.15秒之间快速下降到2.5kw。以这种方式,由于ecat对hv总线功率平衡的快速负贡献,在放电功率极限之外的hv电池功率骤增的持续时间被最小化。在一些示例中,ecat 110功率减小的量可以基于hv电池功率在放电功率极限之外的量。例如,在hv电池功率极限比放电功率极限高1kw的情况下,ecat 110功率可以减小对应的值。使用曲线图604b中所示的示例,这将导致ecat 110的功率从2kw减小到1kw。以这种方式,ecat 110的功能仅减少了可能的最小量以使hv电池功率处于操作极限内。因此,本公开提供了一种用于管理hv电池的功率同时维持至少一些ecat 110功能的改进方法。这种控制策略同样适用于上述过程300。
59.在步骤506处,控制器116使得bisg 104通过减少电功率(例如,增加对电池的功率输出)以补偿hv附件功率的增加来对曲线图602b中所示的hv附件功率导通瞬态作出反应。然而,如上所讨论,bsig104可通常具有高惯性、高电感和通信等待时间,其导致对hv附件功率导通瞬态的响应被延迟。例如,曲线图606b示出了在时间t=1.5秒处开始并且在时间t=1.6秒处结束,bisg 104的功率从大约-2.5kw减小到-7kw(例如,增加对电池的功率输出)。然而,在这种情况下,并且与408b中所示的示例不同,hv电池106的功率从时间t=1.5秒开始并且在时间t=1.6结束,从2.5kw进一步减小到0kw。
60.在步骤508处,响应于bisg 104的充电功率的增加,控制器116使ecat 110的电负载增加。例如,响应于确定bisg 104的功率的减小,控制器116可以使ecat 110的负载以与bisg 104的功率减小的速率对应的速率成比例地增加。在曲线图604b中所示的示例中,供应给ecat的功率在时间t=1.5秒处开始并且在时间t=1.6秒处结束从0kw增加到2kw,此时bisg 104的功率停止减小并稳定在大约-7kw。以这种方式,控制ecat 110以补偿bisg 104的减少的功率,这导致hv电池在其操作极限内的稳定功率。重要的是,以这种方式控制ecat 110允许在系统100等待bisg 104响应时将hv电池功率保持在操作极限内。换句话说,将ecat 110功率从hv电池功率平衡中移除并将其重新引入hv电池功率平衡中,以最小化hv电池功率骤增在容许的功率窗口之外的持续时间。在该用例(突然的hv附件功率引入)中,过程500可以依赖于由发动机后处理控制器控制的ecat110,所述发动机后处理控制器被配置为输送所需的功率以管理后处理温度。例如,ecat 110的操作可以从被配置为输送期望的后处理温度的主模式切换到用于实施功率管理策略的辅助模式。以这种方式,可以实施ecat 110的选择性操作以保护hv电池免受不受控的附件功率引入的影响。例如,ecat适用于本文公开的控制策略(例如,而不是另一个可线性控制的电气装置)的原因之一是,尽管其主要目的是后处理温度管理,但其用于热管理的操作可以容忍利用其激活的其他策略。
61.图5和图6的动作或描述可以与本公开的任何其他示例一起使用。另外,关于图5描
述的动作和描述可以以任何合适的替代顺序或并行地完成以促进本公开的目的。应当理解,关于图5和图6描述的优点和益处同样适用于本文描述的任何其他系统和过程。
62.图7示出了根据本公开的一些示例的包括电功率控制系统700的混合动力车辆701。在图7所示的示例中,车辆701包括联接到马达-发电机(例如,带传动集成式起动机(bisg)704)的发动机702。bisg704电耦合(由实线连接器示出)到高压(hv)(例如,48v或350v)电池/总线706、一个或多个hv辅助部件(例如,hv附件)诸如dc-dc转换器708和/或逆变器、以及电加热催化器(ecat)710,所述电加热催化器被配置为帮助减少从发动机702流到排气口712的排气中的碳氢化合物和no
x
排放物。在图7所示的示例中,dc-dc转换器708电耦合到低压(lv)(例如,12v)总线/电池114,所述低压总线/电池被配置为向车辆的一个或多个lv附件供应电功率。
63.在图7所示的示例中,控制系统700包括控制器716,例如动力传动系统控制模块(pcm),其与发动机702、bisg 704、hv电池/总线706、dc-dc转换器708和ecat 710中的每一者操作通信(例如,由虚线连接器示出)。然而,本公开不限于图7所示的设置。例如,控制器716可以是任何适当类型的控制器,诸如独立控制器,或混合动力车辆的任何其他适当控制器。例如,控制器116可以至少部分地与车辆的另一个控制器(诸如dc-dc转换器708的控制器)集成。此外,控制器716可以被配置为与图1所示的车辆部件中的任何一个或多个和/或车辆的任何其他适当部件操作地通信。例如,控制器716可以是至少部分地被配置为与至少一个hv附件、电动马达-发电机和ecat可操作地通信以控制hv电池的电功率输出的独立控制器。此外,应当理解,控制器716可以被配置为执行以上公开的用于混合动力车辆的电功率控制方法中的一者或多者,如上所述。
64.图8示出了控制器716的示例性框图。控制器716包括控制电路718和i/o路径724,所述控制电路718包括存储装置720和处理电路722。控制器716可以基于任何合适的处理电路。如本文所提及的,处理电路应当被理解为意指基于一个或多个微处理器、微控制器、数字信号处理器、可编程逻辑装置、现场可编程门阵列(fpga)、专用集成电路(asic)等的电路,并且可以包括多核处理器(例如,双核、四核、六核或任何合适数量的核)。在一些示例中,例如,处理电路可以分布在多个单独的处理器上、多个相同类型的处理器(例如,两个英特尔酷睿i9处理器)上或多个不同的处理器(例如,英特尔酷睿i7处理器和英特尔酷睿i9处理器)上。
65.存储装置720和/或其他车辆控制器的其他部件的存储装置可以是电子存储装置。如本文所提及的,短语“电子存储装置”或“存储装置”应理解为意指用于存储电子数据、计算机软件或固件的任何装置,诸如随机存取存储器、只读存储器、硬盘驱动器等,和/或它们的任何组合。在一些示例中,控制器716执行用于存储在存储器(例如,存储装置720)中的应用的指令。具体地,应用可以指示控制器716执行本文讨论的方法/功能。
66.另外或替代地,控制器716可以被配置为经由i/o路径724传输和/或接收数据。例如,i/o路径724可以包括通信端口,所述通信端口被配置为从发动机控制模块、动力传动系统控制模块和车辆系统控制模块(诸如ecat和/或排气系统控制模块)中的至少一者传输和/或接收数据。
67.本公开是为了说明上面讨论的系统和过程的一般原理而提出,并且旨在是说明性的而非限制性的。更一般地,以上描述意图是示例性的而非限制性的,并且本公开的范围通
过参考所附权利要求来最佳地确定。换句话说,仅所附权利要求意图设置关于本公开所包括的内容的界限。
68.虽然参考特定示例性应用描述了本公开,但是应当理解,本公开不限于此,并且可以独立地实现和/或提供和/或使用在任何方面描述和限定的各种特征的特定组合。对于本领域技术人员来说明显的是,在不脱离本公开的范围和精神的情况下,可以进行各种修改和改进。本领域技术人员应当理解,在不脱离本公开的范围的情况下,可以省略、修改、组合和/或重新布置本文讨论的过程的动作,并且可以执行任何附加动作。
69.也可以提供如本文所述的任何系统特征作为方法特征,并且反之亦然。如本文所使用的,手段加功能特征可以替代地根据它们的对应结构来表示。应进一步理解,上述系统和/或方法可以应用于其他系统和/或方法或根据其他系统和/或方法来使用。
70.一个方面中的任何特征可以以任何适当的组合应用于其他方面。具体地,方法方面可以应用于系统方面,并且反之亦然。此外,一个方面中的任何、一些和/或所有特征可以以任何适当的组合应用于任何其他方面中的任何、一些和/或所有特征。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1