一种封装用镀金钯键合铜线的生产工艺的制作方法

文档序号:10716660阅读:899来源:国知局
一种封装用镀金钯键合铜线的生产工艺的制作方法
【专利摘要】本发明公开了一种用于半导体集成电路封装领域的镀金钯键合铜线的生产工艺,其工艺过程是将添加了微量元素的经过连续铸造技术的中心铜棒再经粗拉拔、退火、电镀钯层、精拉拔、退火、电镀金层和清洗而制成理化性能优良的镀金钯键合铜线。本工艺过程的特征是只经过一次粗拉拔和一次精拉拔工艺,并且在精拉拔到目标线径后再进行镀金工艺。经本发明的工艺生产的镀金钯键合铜线在拉制过程中断线率极低,镀钯层和镀金层结合性好,极大的提高了键合线的键合可靠性及稳定性。
【专利说明】
一种封装用镀金钯键合铜线的生产工艺
技术领域
[0001]本发明涉及半导体集成电路封装领域,具体而言,涉及一种半导体集成电路封装用镀金钯键合铜线的生产工艺。
【背景技术】
[0002]封装是指将芯片在框架或基板上布局、粘贴固定及连接,引出接线端子并通过塑封固定,构成整体立体结构的工艺,既有安放、固定、密封、增强散热和保护芯片的作用,又有连接芯片内部电路和外部电路的作用,而芯片内部焊盘与外部引线框架之间的连接是通过键合线实现的,因此对键合线的导电性有很高的要求;为使键合线能够被拉伸到所需直径,所用金属须有足够的延伸率;为避免芯片被破坏,键合线需能在足够低的温度下进行热压焊接和超声焊接,键合线的化学性能、耐腐蚀性能和冶金特性必须与它所焊接的材料相熔合,不会对芯片造成影响。
[0003]在传统的封装键合工艺中,常用金含量为99.99%以上的纯金线,键合金线具有电导率大、耐腐蚀、韧性好和易焊接等优点。由于金价的不断上升,封装金线的成本占比就越来越高,所以目前多采用铜线、镀钯铜线、镀金铜线、纯银线或者银合金线来替代昂贵的金线产品。键合铜线价格低廉,且在导电率、拉伸强度、延展率和剪切强度等方面表现优于金丝,已经成功的用于如DIP、S0P和功率器件等产品的封装生产,但是,随着半导体集成电路行业日益、快速向小型化、多引脚高密度方向发展,对于键合铜丝的性能要求也越来越苛亥IJ,键合铜线的易氧化、易腐蚀、硬度大、焊接性差和拉拔断线的问题日益凸显,直接造成产品合格率下降。镀钯键合铜线采用相对低廉的钯作为镀层,控制成本的同时,也可解决铜线易氧化和耐腐蚀的问题,但由于钯的导电性能仍存在不足导致其在体积非常小的芯片封装中产生的热量无法忽视,并且钯的硬度略大,易对芯片造成损伤。镀金铜线虽然客服了镀钯铜线硬度大和电阻大的缺陷,但是由于金与铜的结合力没有钯与铜的结合力强,这种线材本身的稳定性就不高。而银合金键合线或纯银线在使用过程中自身易被氧化或者被硫化,且在高温高湿环境下会发生银离子漂移问题。
[0004]目前,业内开始用镀金镀钯键合线来解决上述问题。金属钯镀在中心铜线表层可耐氧化耐腐蚀,金属金镀在金属钯外层可减轻键合时线的硬度过大对芯片的损伤。现有技术中,中国授权专利CN103219249A公开了一种镀钯镀金的双镀层键合铜线的制造方法,从其金属的含量(铜:92.6-93.8%,钯:2.7-5.4%,金:1.0-2.5%,锡:0.5%,镁:0.3%,铝:0.2%)可看出成本比铜线要高出很多,并且钯层和金层的厚度过大会不利于钯层和铜线的结合与金层和钯层的结合;在镀金工艺中采用先镀金后拉丝的顺序,很容易出现表面分层、表面破皮和镀层不均现象,键合时会堵塞劈到等工具,烧球不均匀,从而影响键合效果。现有技术在理化性能上尚有不足,不能满足更高的技术要求。

【发明内容】

[0005]本发明的目的在于发明一种封装用镀金钯键合铜线的生产工艺,以克服现有键合线键表面易氧化、高温稳定性差和拉拔断线的问题,以及镀金钯键合铜线电镀层不稳定、不耐摩擦的问题,解决镀金钯键合铜线在使用上的高要求并克服已有技术中存在的技术和成本问题。
[0006]本发明提出的镀金钯键合铜线具有三层结构,最内层是在单晶铜中添加了微量金属元素的中心铜线,所含微量元素为银、硅、钙、铝、铁和镍;在中心铜线的表面电镀钯层;在钯层的表面电镀金层。
[0007]其中,所述高纯单晶铜的纯度大于99.999%,所述钯的纯度大于99.99%,所述金的纯度大于99.99 %。
[0008]其中,所述镀金钯键合铜线的质量百分比为:铜的质量百分比为95.5-96.0%;钯的质量百分比为3.0-3.5%;金的质量百分比为0.8-1.0%;微量金属元素总的质量百分比<0.01%,其中银的质量百分比彡0.002%,硅的质量百分比彡0.002%,钙的质量百分比彡
0.002%,铝的质量百分比彡0.002%,铁的质量百分比彡0.001 %,镍的质量百分比彡
0.0005%。
[0009]其中,所述中心铜线的直径在15微米-76微米之间,所述电镀钯层的厚度在0.06微米-0.08微米之间,所述电镀金层的厚度在0.01微米-0.03微米之间。
[0010]本发明与现有技术对比的有益效果是:本发明的镀金钯键合铜线在所含金属成分的比例分配上更加合理,选取的微量元素添加在铜线中使制成的键合线具有较强的延展性和耐拉伸性能,并最大限度的控制成本;采用一次粗拉拔和一次精拉拔以避免铜线被拉断,镀钯层在拉拔过程中变形一致,表面均匀,致密完整;采用先细拉拔再镀金的工艺顺序,使镀金层镀层均匀,无分层破皮现象。
【附图说明】
[0011]图1为本发明提出的镀金钯键合铜线的结构示意图。
【具体实施方式】
[0012]下面通过【具体实施方式】对本发明提出的镀金钯键合铜丝的制造方法进行详细说明。
[0013]本发明实施例中提出的镀金钯键合铜线,具体结构如图1所示,包括中心铜线1、电镀钯层2、电镀金层3。其中,中心铜线I的原材料为纯度大于99.999%的单晶铜,再通过添加银、硅、钙、铝、铁和镍微量元素高温环境铸造而成;电镀钯层2为纯度大于99.99%的金属钯通过电镀工艺将其镀在中心铜线的表面,钯层能够减轻中心铜线的氧化问题和中心铜线中银漂移的问题,并且钯与铜的结合力强;电镀金层3为纯度大于99.99%的金属金通过电镀工艺将其镀在电镀钯层2的表面,镀钯后再镀金能够进一步缓解氧化,提高耐腐蚀性,改善键合过程中键合线与芯片接触时的硬度,且金的电阻率较金属钯相当,使所述镀金镀钯键合线具有相对稳定的导电性能。
[0014]最终制得的镀金钯键合铜线的质量百分比为:铜的质量百分比为95.5-96.0%;钯的质量百分比为3.0-3.5%;金的质量百分比为0.8-1.0%;微量金属元素总的质量百分比<0.01%,其中银的质量百分比彡0.002%,硅的质量百分比彡0.002%,钙的质量百分比彡
0.002%,铝的质量百分比彡0.002%,铁的质量百分比彡0.001 %,镍的质量百分比彡0.0005%ο
[0015]最终制得的镀金镀钯键合铜线的中心铜线的直径在15微米一76微米之间,电镀钯层的厚度在0.06微米一0.08微米之间,电镀金层的厚度在0.01微米-0.03微米之间。原则上,钯和金的质量百分比越低,镀层厚度越薄,成本越低。但镀层厚度小于0.01微米后实际使用时抗氧化效果不好。
[0016]下面以介绍本发明提出的镀金钯键合铜线的具体生产工艺:
[0017](I)提取高纯铜:提取纯度大于99.999%的高纯铜,清洗、烘干备用;
[0018](2)制备单晶铜合金棒:以最终制得的镀金钯键合铜线为1 O w t %计,将9 5.5 -96.0wt %的高纯铜内部加入小于0.002wt %的高纯银、小于0.002wt %的高纯娃、小于0.002¥七%的高纯钙、小于0.002¥七%的高纯铝、小于0.001¥七%的高纯铁和小于0.0005¥七%的高纯镍,并置于炼熔炉熔化,采用中频加热的加热方式和真空连铸的连铸方式,并控制铸熔条件为:铸熔温度为1150-1300°C,真空度为1.0\10—^0^,精炼时间为30-451^11,连铸速度为150-300mm/min,拉丝速度为7-120m/min,连铸得到直径为3000微米、纵向和横向晶粒数均为一个的单晶铜合金棒。
[0019](3)粗拉拔:将前述直径为3000微米的单晶铜合金棒拉拔成直径小于1000微米的铜线。
[0020](4)退火:将前述直径小于1000微米的铜线进行退火处理,退火温度为400-500°C,退火时间为30-60min,退火后进行水冷。
[0021](5)表面镀钯:对前述铜线电镀3.0-3.5wt%的纯钯,电镀用钯的纯度要求大于99.99%,电镀的工艺参数控制在:电镀液pH值为7-9,电镀液温度为20-50 °C,电流密度控制在0.2-1.5A/dm2,通过控制电镀时间影响镀层厚度,镀钯层的厚度控制在4-6微米。
[0022](6)精拉拔:将前述表面镀钯的铜线精密拉拔成直径为15-76微米的镀钯铜线,拉拔后钯层厚度在0.06-0.08微米。
[0023](7)退火:将前述拉拔后的镀钯铜线进行退火处理,退火温度为400-500 V,退火时间为 30-60min。
[0024](8)表面镀金:将上述镀钯铜线电镀0.8-1.0wt%的纯金,电镀用金的纯度要求大于99.99%,电镀的工艺参数控制在:电镀液pH值为7-9,电镀液温度为20-50 °C,电流密度控制在0.1-1.0A/dm2,通过控制电镀时间影响镀层厚度,镀金层的厚度控制在0.01-0.03微米。
[0025](9)清洗:对上述镀金钯键合铜线进行表面清洗,先用酸液酸洗,然后经超声波清洗,再用高纯水清洗、烘干。
[0026]相对于现有技术的情况,采用本方案能体现如下优越性:
[0027]I)中心铜线中所含微量元素(银、硅、钙、铝、铁、镍)可改善铜的抗氧化性,并可增强中心铜线的延展性和抗拉伸性能,改善中心铜线的熔化热,使中心铜线、钯层、金层熔化热相差最小,在键合形成球时最接近正球形;
[0028]2)工艺(2)制成3000微米中心铜棒、工艺(3)粗拉拔成小于1000微米的铜线、工艺
(6)精拉拔成15-76微米的铜线,通过一次粗拉拔、一次精拉拔使铜线在拉拔的过程中逐步变细,避免了常规一次拉拔工艺使得铜线被拉断的问题和两次精拉拔工艺的复杂性问题,因此可以减少生产过程中不必要的损耗和拉拔模具成本的有效控制;
[0029]3)粗拉拔后设有退火工艺(4)、细拉拔后设有退火工艺(7),使拉拔后的铜线重结晶,以保证其良好的延伸率和断裂负荷;
[0030]4)本方案采用先精拉拔至目标线径后再进行表面镀金工艺,避免了常规工艺中使用先镀金再精拉拔出现的表面分层和破皮问题。
[0031]以上实施方式已经对本发明进行了详细的介绍,但并不限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等均应包含在本发明的保护范围之内。
【主权项】
1.一种封装用镀金钯键合铜线的生产工艺,其特征是该工艺以先后次序依次包括如下步骤: (1)提取高纯铜:提取纯度大于99.999%的高纯铜,清洗、烘干备用; (2)制备单晶铜合金棒:以最终制得的镀金钯键合铜线为10wt%计,将95.5-96.0wt %的高纯铜内部加入小于0.002wt%的高纯银、小于0.002wt%的高纯娃、小于0.002wt %的高纯钙、小于0.002wt %的高纯铝、小于0.0Olwt %的高纯铁和小于0.0005wt %的高纯镍,并置于炼熔炉熔化,采用中频加热的加热方式和真空连铸的连铸方式,并控制铸熔条件为:铸熔温度为1150-1300 0C,真空度为1.0 X 10—5MPa,精炼时间为30_45min,连铸速度为150-300mm/min,拉丝速度为7-120m/min,连铸得到直径为3000微米、纵向和横向晶粒数均为一个的单晶铜合金棒。 (3)粗拉拔:将前述直径为3000微米的单晶铜合金棒拉拔成直径小于1000微米的铜线。 (4)退火:将前述直径小于1000微米的铜线进行退火处理,退火温度为400-50(TC,退火时间为30-60min,退火后进行水冷。 (5)表面镀钯:对前述铜线电镀3.0-3.5wt%的纯钯,电镀用钯的纯度要求大于.99.99%,电镀的工艺参数控制在:电镀液pH值为7-9,电镀液温度为20-50 °C,电流密度控制在0.2-1.5A/dm2,通过控制电镀时间影响镀层厚度,镀钯层的厚度控制在4-6微米。 (6)精拉拔:将前述表面镀钯的铜线精密拉拔成直径为15-76微米的镀钯铜线,拉拔后钯层厚度在0.06-0.08微米。 (7)退火:将前述拉拔后的镀钯铜线进行退火处理,退火温度为400-5000C,退火时间为.30-60min. (8)表面镀金:将上述镀钯铜线电镀0.8-1.0wt %的纯金,电镀用金的纯度要求大于.99.99%,电镀的工艺参数控制在:电镀液pH值为7-9,电镀液温度为20-50 °C,电流密度控制在0.1-1.0A/dm2,通过控制电镀时间影响镀层厚度,镀金层的厚度控制在0.01-0.03微米。 (9)清洗:对上述镀金钯键合铜线进行表面清洗,先用酸液酸洗,然后经超声波清洗,再用高纯水清洗、烘干。2.如权利要求1所述的镀金钯键合铜线,其特征在于:所用高纯铜原材料纯度大于.99.999%,所用金属钯原材料纯度大于99.99%,所用金属金原材料纯度大于99.99 %。3.如权利要求1所述的镀金钯键合铜线,其特征在于所含金属占成品的质量百分比为:铜的质量百分比为95.5-96.0%;钯的质量百分比为3.0-3.5% ;金的质量百分比为0.8-.1.0% ;微量金属元素总的质量百分比<0.01%,其中银的质量百分比<0.002%,娃的质量百分比≤0.002%,钙的质量百分比≤0.002%,铝的质量百分比≤0.002%,铁的质量百分比≤0.001%,镍的质量百分比≤0.0005%。
【文档编号】C25D3/50GK106086962SQ201610435499
【公开日】2016年11月9日
【申请日】2016年6月6日
【发明人】张志强, 杨飞, 马婷婷
【申请人】上海铭沣半导体科技有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1