一种研究高矿化度地层水对CO2驱影响的实验方法与流程

文档序号:12703496阅读:391来源:国知局
一种研究高矿化度地层水对CO2驱影响的实验方法与流程
本发明属于岩心驱替
技术领域
,具体涉及一种研究高矿化度地层水对CO2驱影响的实验方法。
背景技术
:随着油气田开发的不断发展,优质储层的原油储量越来越少,目前勘探的新增储量主要是低渗透油藏,并且其中绝大部分为超低渗透油藏和特低渗透油藏。针对超低渗透油藏和特定渗透油藏,常规的注水开发存着“注不进,采不出”的问题。二氧化碳(CO2)在地层中具有流动性好、能够使原油体积发生大幅度膨胀、大幅度降低原油粘度、降低油气界面张力、与原油发生混相作用等优点。因此,CO2驱开发能弥补注水开发的不足,注入地层中的CO2能够波及到水驱难以波及到的低渗透区域,并与地层原油充分接触,驱动地层剩余油,有效提高微观和宏观驱油效率,进而达到提高原油采收率的目的。CO2驱不仅可以提高石油采收率,而且还能够实现CO2的地下封存,从而减少大气中人为排放的CO2,达到节能减排的目的。然而,CO2是一种特殊的气体,当其注入含水砂岩储层后,在储层温度、压力条件下,CO2会与地层水、储层岩石接触会发生复杂的物理化学反应,二氧化碳在注入地层驱油过程中,注入的二氧化碳在地层水中溶解后,与地层水反应会形成碳酸溶液,并解离出H+和HCO3-、CO32-。一方面,CO2溶于地层水形成的酸性流体会溶蚀岩石中的胶结物,进而提高储层的渗透率,但同时由于地层水中成垢离子的不断增加,在储层压力、温度等条件发生变化时生成次生矿物,堵塞孔隙使储层渗透率降低。另一方面,若地层水本身含有高浓度的钙离子、镁离子、钡离子、锶离子,随着CO2的注入,地层水中碳酸根和碳酸氢根离子浓度的增加,碳酸根和碳酸氢根离子与钙离子、镁离子、钡离子、锶离子反应生成碳酸钙、碳酸镁、碳酸钡、碳酸锶固相沉积,堵塞孔隙喉道从而降低储层渗透率,进而影响到二氧化碳的驱油效果。现有技术如授权公告号102865899B,中国发明授权专利文献公开了一种在高温高压岩心驱替过程中可进行流体体积原位测量的方法,以及能使用该方法进行流体体积测量的装置。该方法分为三步,第一步为正式驱替前的准备工作,目的是使岩心内流体、导管中流体及容器中流体处在应高温高压环境下;第二步开始正式驱替,通过压力泵打入驱替液体,从岩心中驱替出的流体(尤其是气和油)汇集于一密闭透明容器中;第三步为计量各流体体积,待油气水充分分层后,由于三种流体的颜色不同,通过容器上的刻度即可读出三者的体积。所设计的流体体积测量装置结构简单,只需在常规高温高压岩心驱替实验装置的基础上增加四个阀门,两个导管,两个压力测量仪,一个收集容器,一个缓冲容器和一个半渗透隔板即可,但装置的耐腐蚀性和疏油性有所欠缺,该方法难以实现对CO2与地层水作用生成沉淀的定量化数据采集。技术实现要素:本发明针对上述技术问题提供一种准确测量地层水对CO2驱替前后影响的实验方法。本发明针对上述技术问题所采取的方案为:一种研究高矿化度地层水对CO2驱影响的实验方法,步骤如下:1)取岩心,在岩心注入端和出口端分别切下岩心切片A、B,洗岩心,干燥称重,测岩心孔隙体积、气测渗透率,去离子水饱和岩心,测核磁共振,将岩心放入岩心夹持器内驱替,得岩心水测渗透率;2)用原油驱替去离子水饱和原油,保持温度、压力放置,进行CO2水气注入,洗岩心,干燥,测质量、孔隙体积、气测渗透率,抽真空,去离子水饱和岩心,去离子水驱替,测岩心水测渗透率,测核磁共振;3)在岩心注入端和出口端分别切下岩心切片C、D,清洗,烘干,将岩心切片A、B、C、D进行电镜扫描、表面元素和岩石矿物分析,更换岩心、压力、温度重复步骤1、2、3,收集数据;4)将步骤1~3中的去离子水换成地层水,重复步骤1~3。岩心切片A、B厚度为1~3mm,岩心切片C、D厚度为1~3mm,采用此厚度范围的岩心切片所获得的数据较准确,采用驱替过CO2的岩心切片和未驱替的岩心切片进行实验,将获得的数据进行比较。步骤2中用原油驱替去离子水饱和原油,保持温度、压力放置20~26h,使水和原油充分自由分布,提升数据的准确性。步骤2中进行CO2水气注入,先注入4~6PV的CO2再注入4~6PV去离子水,共进行2~4个循环周期注入,CO2本身存在流度低、易窜等特征,通过水气交替注入,采收率均高于直气驱注入。步骤3中在岩心注入端和出口端分别切下岩心切片C、D,用去离子水清洗2~4次,在60~90℃下烘干30~60min,通过清洗去除岩心切片表面附着的杂质,再通过烘干将水分去除利于进行电镜扫描、表面元素和岩石矿物分析,使获得的数据准确性提高,保证研究CO2驱替对储层物性及开发参数的影响的准确性。步骤2中通过气液分离装置、流量计和上位机测气测渗透率,气液分离装置内壁设有疏油涂层,疏油涂层由以下成分及重量份组成:树脂100~120份、抗污剂1~2份、消泡剂0.1~0.2份、乙醇0.11~0.3份、流平剂0.1~0.3份、SiO2纳米粒子3~5份、咯烷酮羧酸钠0.3~1份、黑炭3~5份、二甲苯溶剂20~30份、稀释剂1~10份。避免驱替得到的油性流体附着在气液分离装置内壁造成实验数据的准确性下降,还可避免油性流体对气液分离装置的腐蚀,延长气液分离装置的使用寿命,疏油涂层不易与驱替得到的气体发生反应,提高流量计的准确性。步骤1中的岩心夹持器内设有铅套,铅套内壁设有耐腐蚀涂层,耐腐蚀涂层由以下成分及重量份组成:对苯二甲酯环氧树脂31~34份、丙烯酸异辛酯13~16份、氟硅酸钾7~12份、大豆异黄酮0.002~0.01份、碳酸二辛酯9~12份、三硫代碳酸酯4~7份、异VC钠0.5~0.8份、硼镁石粉13~14份、环氧硬脂酸辛酯6~11份。采用铅套替换常用的橡胶套,可以有效防止超临界CO2对密封套的腐蚀,在铅套内壁涂覆耐腐蚀涂层,进一步提高铅套内壁的耐腐蚀性、密封性、耐老化性,还具有一定的抗氧化性。与现有技术相比,本发明的优点在于:通过设计了两大组对比实验,在压力、温度变化相同的条件下,得到不考虑地层水沉淀情况下,CO2-水-岩石作用对储层物性及开发参数的影响,通过对比实验数据,排除CO2对岩石溶蚀的影响因素,得到CO2与地层水在储层环境中生成的沉淀对储层物性及开发参数的影响。本发明在岩心夹持器采用铅套替换常用的橡胶套,可以有效防止超临界CO2对密封套的腐蚀,在铅套内壁涂覆耐腐蚀涂层,进一步提高铅套内壁的耐腐蚀性、密封性、耐老化性,还具有一定的抗氧化性。在气液分离装置内壁设有的疏油涂层可避免驱替得到的油性流体附着在气液分离装置内壁造成实验数据的准确性下降,还可避免油性流体对气液分离装置的腐蚀,延长气液分离装置的使用寿命,本发明实验步骤简单,检测得到的数据准确,可实现CO2-水-岩石相互作用、CO2-地层水沉淀作用对储层物性及开发参数采集研究。附图说明图1为CO2驱替前后水测渗透率随压力变化曲线;图2为CO2驱替前后岩心孔隙度随压力变化曲线;图3为CO2驱替前后岩心质量随压力变化曲线;图4为CO2驱替前后水测渗透率随温度变化曲线;图5为CO2驱替前后岩心孔隙度随温度变化曲线;图6为CO2驱替前后岩心质量随温度变化曲线;图7为CO2驱替前后水测渗透率随地层水矿化度变化曲线;图8为CO2驱替前后岩心孔隙度随地层水矿化度变化曲线;图9为CO2驱替前后岩心质量随地层水矿化度变化曲线。附图标记说明:1地层水;2去离子水;3对比差值。具体实施例以下结合实施例和附图作进一步详细描述:实施例1:如图1~9所示,一种研究高矿化度地层水对CO2驱影响的实验方法,步骤如下:1)取岩心,在岩心注入端和出口端分别切下岩心切片A、B,洗岩心,干燥称重,测岩心孔隙体积、气测渗透率,去离子水饱和岩心,测核磁共振,将岩心放入岩心夹持器内驱替,得岩心水测渗透率;2)用原油驱替去离子水饱和原油,保持温度、压力放置,进行CO2水气注入,洗岩心,干燥,测质量、孔隙体积、气测渗透率,抽真空,去离子水饱和岩心,去离子水驱替,测岩心水测渗透率,测核磁共振;3)在岩心注入端和出口端分别切下岩心切片C、D,清洗,烘干,将岩心切片A、B、C、D进行电镜扫描、表面元素和岩石矿物分析,更换岩心、压力、温度重复步骤1、2、3,收集数据;4)将步骤1~3中的去离子水换成地层水,重复步骤1~3。岩心切片A、B厚度为1~3mm,岩心切片C、D厚度为1~3mm,采用此厚度范围的岩心切片所获得的数据较准确,采用驱替过CO2的岩心切片和未驱替的岩心切片进行实验,将获得的数据进行比较。步骤2中用原油驱替去离子水饱和原油,保持温度、压力放置20~26h,使水和原油充分自由分布,提升数据的准确性。步骤2中进行CO2水气注入,先注入4~6PV的CO2再注入4~6PV去离子水,共进行2~4个循环周期注入,CO2本身存在流度低、易窜等特征,通过水气交替注入,采收率均高于直气驱注入。步骤3中在岩心注入端和出口端分别切下岩心切片C、D,用去离子水清洗2~4次,在60~90℃下烘干30~60min,通过清洗去除岩心切片表面附着的杂质,再通过烘干将水分去除利于进行电镜扫描、表面元素和岩石矿物分析,使获得的数据准确性提高,保证研究CO2驱替对储层物性及开发参数的影响的准确性。步骤2中通过气液分离装置、流量计和上位机测气测渗透率,气液分离装置内壁设有疏油涂层,疏油涂层由以下成分及重量份组成:树脂100~120份、抗污剂1~2份、消泡剂0.1~0.2份、乙醇0.11~0.3份、流平剂0.1~0.3份、SiO2纳米粒子3~5份、咯烷酮羧酸钠0.3~1份、黑炭3~5份、二甲苯20~30份、稀释剂1~10份。咯烷酮羧酸钠和乙醇在涂层中的应用,能避免驱替得到的油性流体附着在气液分离装置内壁造成实验数据的准确性下降,还可避免油性流体对气液分离装置的腐蚀,延长气液分离装置的使用寿命,疏油涂层不易与驱替得到的气体发生反应,提高流量计的准确性。步骤1中的岩心夹持器内设有铅套,铅套内壁设有耐腐蚀涂层,耐腐蚀涂层由以下成分及重量份组成:对苯二甲酯环氧树脂31~34份、丙烯酸异辛酯13~16份、氟硅酸钾7~12份、大豆异黄酮0.002~0.01份、碳酸二辛酯9~12份、三硫代碳酸酯4~7份、异VC钠0.5~0.8份、硼镁石粉13~14份、环氧硬脂酸辛酯6~11份。采用铅套替换常用的橡胶套,可以有效防止超临界CO2对密封套的腐蚀,在铅套内壁涂覆耐腐蚀涂层,进一步提高铅套内壁的耐腐蚀性、密封性、耐老化性,还具有一定的抗氧化性。实施例2:如图1~9所示,一种研究高矿化度地层水对CO2驱影响的实验方法,步骤如下:1)取岩心,在岩心注入端和出口端分别切下岩心切片A、B,厚度优选为2mm,洗岩心,干燥称重,测岩心孔隙体积、气测渗透率,去离子水饱和岩心,测核磁共振,将岩心放入岩心夹持器内驱替,得岩心水测渗透率;2)利用去沥青质原油驱替去离子水饱和原油,保持温度、优选压力放置24h,进行CO2水气注入,先注入5PV的CO2再注入5PV去离子水,共进行3个循环周期注入,洗岩心,干燥,测质量、孔隙体积、气测渗透率,抽真空,去离子水饱和岩心,去离子水驱替,测岩心水测渗透率,测核磁共振;3)在岩心注入端和出口端分别切下岩心切片C、D,厚度优选为2mm,用去离子水清洗2次,在65℃下烘干40min,将岩心切片A、B、C、D进行电镜扫描、表面元素和岩石矿物分析,更换岩心、压力、温度重复步骤1、2、3,收集数据;4)将步骤1~3中的去离子水换成地层水,重复步骤1~3。步骤1~4中的常规技术为本领域技术人员所知晓的现有技术,在此不作详细叙述。步骤2中通过气液分离装置、流量计和上位机测气测渗透率,气液分离装置内壁设有疏油涂层,疏油涂层由以下成分及优选的重量份组成:树脂100份、抗污剂1.5份、消泡剂0.18份、乙醇0.18份、流平剂0.2份、SiO2纳米粒子4份、咯烷酮羧酸钠0.8份、黑炭4份、二甲苯溶剂22份、稀释剂8份。避免驱替得到的油性流体附着在气液分离装置内壁造成实验数据的准确性下降,还可避免油性流体对气液分离装置的腐蚀,延长气液分离装置的使用寿命,疏油涂层不易与驱替得到的气体发生反应,提高流量计的准确性。稀释剂为丙酮、甲乙酮、环己酮、苯、甲苯、二甲苯、正丁醇、苯乙烯中的一种以上,其质量比为1:10。树脂为氟改性有机硅树脂、氨基丙烯酸树脂。抗污剂由聚(十七氟癸基)甲基硅氧烷、聚(九氟己基)硅氧烷、聚甲基(三氟丙基)硅氧烷、PDMS、PTFE组成。消泡剂由乳化硅油。流平剂为聚二甲基硅氧烷、聚醚聚酯改性有机硅氧烷、烷基改性有机硅氧烷组成。步骤1中的岩心夹持器内设有铅套,铅套内壁设有耐腐蚀涂层,耐腐蚀涂层由以下成分及优选重量份组成:对苯二甲酯环氧树脂33份、丙烯酸异辛酯15份、氟硅酸钾8份、大豆异黄酮0.004份、碳酸二辛酯10份、三硫代碳酸酯5份、异VC钠0.7份、硼镁石粉13.6份、环氧硬脂酸辛酯7份。采用铅套替换常用的橡胶套,可以有效防止超临界CO2对密封套的腐蚀,在铅套内壁涂覆耐腐蚀涂层,提高铅套内壁的耐腐蚀性、密封性、耐老化性,还具有一定的抗氧化性。实施例3:如图1~9所示,一种研究高矿化度地层水对CO2驱影响的实验方法:岩心处理:为观察CO2驱替前后岩石表面形貌、岩石矿物的变化情况,在目前现有的技术条件下,进行了特殊处理,反应前,在岩心的注入端和岩心的出口端分别切取厚度优选为2mm的岩心片A和B,作为的分析样品。CO2驱替后,再在岩心的注入端和岩心的出口端分别切取厚度优选为2mm的岩心片C和D,尽可能避免岩心的不均匀性。为了分别研究CO2-水-岩石相互作用、CO2-地层水沉淀作用对储层物性及开发参数的影响,通过设计了两大组对比实验,如表1所示。在压力、温度变化相同的条件下,不考虑地层水沉淀情况下,CO2-水-岩石作用对储层物性及开发参数的影响。通过对比实验1与2,排除CO2对岩石溶蚀的影响因素,得到CO2与地层水在储层环境中生成的沉淀对储层物性及开发参数的影响,如表1所示,每组实验都进行了在不同温度、不同压力下不同矿化度的地层水、不同沥青质含量的原油饱和岩心的CO2驱替实验。表1CO2水气交替驱替方案序号实验组饱和水饱和油1CO2-水-岩石作用去离子水去沥青质原油2CO2-地层水-岩石作用地层水去沥青质原油通过对比CO2驱替前后岩心渗透率、孔隙度、孔隙结构、岩心矿物含量、岩石表面形貌、岩心质量以及采收率的变化,研究CO2驱替对储层物性及开发参数的影响。CO2-水-岩石相互作用岩心驱替实验:首先在岩心的注入端和出口端各切下岩心切片A、B,然后用蒸馏法洗岩心,干燥,称重,测岩心孔隙体积、气测渗透率;利用去离子水饱和岩心,测核磁共振;打开去离子水活塞容器阀门,利用去离子水驱替,得到岩心的水测渗透率;利用去沥青质原油驱替去离子水饱和原油,使原油饱和度达到设定值,保持温度、压力放置24小时,使水和原油充分自由分布。通过调节CO2活塞阀门和去离子水活塞阀门在实验温度、压力下进行CO2水气交替注入;先注入5PV的CO2再注入5PV去离子水,共进行3个循环周期注入。清洗岩心,干燥岩心,测质量、孔隙体积、气测渗透率。抽真空,用去离子水饱和岩心,然后用去离子水驱替岩心,测反应后岩心的水测渗透率,然后测核磁共振测试;在岩心的注入端和出口端各切下一片岩心切片C、D,清洗,烘干,和实验前的岩心切片A、B一起进行电镜扫描、表面元素和岩石矿物分析。更换岩心,在不同压力、温度条件下重复上面的实验过程。CO2-地层水沉淀岩心驱替实验:实验过程和CO2-水-岩石相互作用岩心驱替实验相同,通过调节去离子水活塞阀门和地层水阀门,将去离子水驱替换成地层水驱替,并进行不同矿化度的地层水驱替实验。实验方案:CO2-地层水沉淀CO2岩心驱替实验的反应温度(T)、CO2压力(p)、地层水矿化度及其他条件如表2所示。表2CO2-地层水沉淀岩心实验方案参数以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制。凡是根据发明技术实质对以上实施例所作的任何简单修改、变更以及等效变化,均仍属于本发明技术方案的保护范围内。当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1