基于心包状软体补气阀的空气再循环系统及其工作方法

文档序号:25993430发布日期:2021-07-23 21:06阅读:138来源:国知局
基于心包状软体补气阀的空气再循环系统及其工作方法

本发明属于软机器人技术领域,具体涉及一种基于心包状软体补气阀的空气再循环系统。



背景技术:

由于软机器人的重量轻和顺应性,软机器人领域在可穿戴设备和人机交互方面处于有利地位,而气动系统是软机器人中应用最广泛的系统类型之一,具有柔顺性、轻量化和高力密度等优势。然而,气动系统的能耗效率较低,压缩空气在使用后会被排出丢弃;并且系统响应缓慢,增压和排气需要相当多的时间,从而限制了控制性能;当压缩空气从系统排出时会产生过大的噪音,也不利于气动系统在人机交互及可穿戴式等方面的应用,这使得在软体机器人中广泛应用气动驱动系统具有极大的挑战性。

为了提高系统效率和控制性能,并且实现压缩气体的再利用,本发明提出了一种采用软体补气阀的空气再循环系统。该系统可将气动执行系统内几乎所有的压缩空气回收再利用,并且提高系统效率。本发明软体补气阀是基于心包结构设计而成,该补气阀采用低弹性的软外壁,以弹性势能的形式被动地储存压缩空气的能量,从而提高了气动系统效率和软体机器人的卸压性能;该系统可以在不影响卸压性能的情况下有效回收压缩空气,节省能耗的同时还大大提高了气动系统的整体效率,并且减少压缩气体排气过程中产生的噪声。本发明的一种基于心包状软体补气阀的空气再循环系统为软体机器人的发展提供了新的技术思路,并且应用广泛,不仅仅局限于软机器人领域。



技术实现要素:

本发明的目的在于提供一种基于心包状软体补气阀的空气再循环系统及其工作方法。

本发明基于心包状软体补气阀的空气再循环系统,包括气源、控制阀、气动柔性驱动器和软体补气阀。所述气源的出气口通过控制阀连接到气动柔性驱动器的控制气口。气动柔性驱动器的控制气口通过控制阀连接到软体补气阀的进气口。软体补气阀的出气口连接到气源。

所述的软体补气阀包括刚性支架、连接盘和弹性膜囊。连接盘的两侧面与两个刚性支架的内端端面分别固定。连接盘上开设有中心通气孔。两个刚性支架的内腔通过中心通气孔连接。弹性膜囊包覆在连接盘和两个刚性支架上。弹性膜囊的内侧面中部与连接盘密封固定;弹性膜囊内侧面的两端分别超出刚性支架的通气接口;弹性膜囊的两端开口分别作为软体补气阀的进气口、出气口。

作为优选,所述的气源包括空气压缩机、空气罐和单向阀。单向阀的输入口、软体补气阀的出气口和空气压缩机的进气口连接在一起。空气压缩机的出气口连接到空气罐的进气口。空气罐的出气口连接到控制阀的第一通气口;控制阀的第二通气口连接到气动柔性驱动器的控制气口。控制阀的第三通气口通过管道连接到软体补气阀的进气口。

作为优选,所述的控制阀是三位三通换向阀;具有三个工作位,在第一个工作位时,三个通气口均截止;在第二个工作位时,第二通气口与第一通气口连通;在第三个工作位时,第二通气口与第三通气口连通。

作为优选,所述连接盘的一侧侧面的中心位置上开设有安装槽;安装槽的一侧侧壁上连接有逆止片。初始状态下,逆止片盖住中心通气孔。两个刚性支架中,靠近逆止片的刚性支架为输入侧刚性支架;远离逆止片的刚性支架为输出侧刚性支架。输入侧刚性支架的外端的通气接口对应软体补气阀的进气口;输出侧刚性支架的外端的通气接口对应软体补气阀的出气口。

作为优选,所述连接盘的外圆周面上开设有环形凹槽。弹性膜囊的内侧面中部设置有凸环。凸环嵌入环形凹槽内。

作为优选,所述弹性膜囊和连接盘均采用硅橡胶材料浇铸而成。

作为优选,所述刚性支架呈空心的回转体状,且外端端部呈圆管状。所述刚性支架的内端端部为圆形平面;刚性支架的内端开设有通气槽。所述的连接盘呈圆盘状。

作为优选,所述的软体补气阀的制造方法如下:

步骤一、通过3d打印的方式制备连接盘模具、补气阀外模和两个刚性支架;所述的连接盘模具由型芯和左右排布的两个对称的连接盘半外模组成。两个连接盘半外模拼接后形成圆盘状的型腔。型芯的形状与连接盘上的中心通气孔和逆止片与连接盘主体之间的缝隙对应,使得逆止片只有一侧边缘与连接盘连接。所述的补气阀外模的型腔与软体补气阀的外形对应。

步骤二、配置硅橡胶溶液并进行搅拌和消泡处理。

步骤三、一次浇铸。对连接盘模具内壁喷涂脱模剂。之后,将硅橡胶溶液注入连接盘模具中。固化后拆开连接盘模具,得到连接盘。再剂将连接盘两侧面分别与两个刚性支架的内端面分别粘接,形成软体补气阀的主体。

步骤四、二次浇铸。对两个刚性支架的外侧面以及补气阀外模的型腔喷涂脱模剂。然后将步骤三得到的软体补气阀的主体与补气阀外模的型腔安装固定;将硅橡胶溶液注入补气阀外模的型腔和刚性支架之间的空隙中。固化后,将补气阀外模拆开,在形成的弹性膜囊的两端端部开设通气孔。

作为优选,步骤一中,连接盘模具、补气阀外模和刚性支架打印完成后使用砂纸进行打磨处理。

该基于心包状软体补气阀的空气再循环系统的工作方法如下:

空气压缩机通过单向阀吸入外部空气,并压缩储存到空气罐中;通过控制阀来控制空气罐中的气体流入气动柔性驱动器或气动柔性驱动器内的气体流入软体补气阀中,实现气动柔性驱动器的驱动。

当气动柔性驱动器内的气体流入软体补气阀时,弹性膜囊内的气压升高,使得弹性膜囊膨胀。将气体的一部分压力势能转化为弹性势能进行储存,减小软体补气阀内部的压强,使得气动柔性驱动器内的气体能够顺利进入软体补气阀中。当空气压缩机再次启动时,软体补气阀内气体输入到空气压缩机,且弹性膜囊收缩,释放弹性势能,减小空气压缩机的功耗。

本发明具有的有益效果是:

1、本发明的空气再循环系统采用心包状的软体补气阀回收压缩空气,使得流向压缩机空气的质量流量增大,系统增压性能增强,压缩机休息时间增加,大大提高了气动系统的整体效率。

2、本发明中软体补气阀采用能够膨胀的弹性膜囊,其充入气体时以弹性势能的形式被动地储存压缩空气的能量,从而提高了气动执行机构的卸压性能,避免了气动执行机构原本的控制性能变差,并且自带连接盘结构来防止回流,进一步提高了系统工作效率。

3、本发明回收再利用压缩空气,还大大降低了由于高压气体排出而产生的噪声。

4、本发明中软体补气阀制造简单,通过3d打印的刚性支架既可以充当零部件,也同时作为模具进行浇铸,这种一体化的设计大大降低了制造复杂度,提高了软体补气阀的气密性和精度。

5、本发明中软体补气阀应用范围较广,不仅仅局限于软机器人领域,可以运用到各种气动系统中。

附图说明

图1为本发明的一种基于心包状软体补气阀的空气再循环系统整体结构示意图;

图2为本发明中软体补气阀的剖面图;

图3为本发明中刚性支架的示意图;

图4为本发明中连接盘的示意图;

图5为无空气收集装置的气动系统原理图;

图6为本发明提供的空气再循环系统的原理图;

图7为本发明制造软体补气阀时使用的连接盘模具的示意图;

图8为本发明制造软体补气阀时使用的软体阀外模的示意图。

具体实施方式

以下结合附图对本发明作进一步说明。

如图1所示,基于心包状软体补气阀的空气再循环系统,包括空气压缩机1、空气罐2、控制阀3、气动柔性驱动器4、软体补气阀5和单向阀6。软体补气阀5上设置有进气口和出气口。单向阀6的输入口、软体补气阀5的出气口和空气压缩机1的进气口通过三通接口和管道连接在一起。空气压缩机1的出气口连接到空气罐2的进气口。空气罐2的出气口连接到控制阀的第一通气口;控制阀的第二通气口连接到气动柔性驱动器4的控制气口。控制阀的第三通气口通过管道连接到软体补气阀5的进气口。控制阀3是三位三通换向阀;具有三个工作位,在第一个工作位时,三个通气口均截止;在第二个工作位时,第二通气口与第一通气口连通;在第三个工作位时,第二通气口与第三通气口连通。

如图2和3所示,所述软体补气阀5包括两个刚性支架8、一个连接盘9和一个弹性膜囊10。所述刚性支架8呈回转体状,采用3d打印制造而成,具体材料为abs树脂聚合物,用于空气的流通并且支撑弹性膜囊10,防止补气阀体积的减小而导致工作效率的降低;刚性支架8的内端端部为圆形平面,外端设置有呈圆管状的通气接头8-1。刚性支架8的内端开设有通气槽8-2。通气槽8-2呈正方形。

如图2和4所示,连接盘9呈圆盘状。连接盘9的两侧面与两个刚性支架8的内端端面分别粘接。连接盘9上开设有中心通气孔12。连接盘9的一侧侧面的中心位置上开设有方形的安装槽;安装槽的一侧侧壁上连接有逆止片13。初始状态下,逆止片13盖住中心通气孔12。所述连接盘9是通过3d打印的模具浇铸制造而成。两个刚性支架8中,靠近逆止片13的刚性支架8为输入侧刚性支架;远离逆止片13的刚性支架8为输出侧刚性支架。输入侧刚性支架的外端的通气接口对应软体补气阀5的进气口;输出侧刚性支架的外端的通气接口对应软体补气阀5的出气口。逆止片13使得气体只能由输入侧刚性支架输向输出侧刚性支架。

连接盘9的外圆周面上开设有环形凹槽。弹性膜囊10包覆在连接盘9和两个刚性支架8上。弹性膜囊10的内侧面中部设置有凸环。凸环嵌入环形凹槽内。弹性膜囊10的内侧面中部与连接盘9粘接;使得弹性膜囊10的内腔被分隔为两个独立的腔室。弹性膜囊10与连接盘9材质相同,在弹性膜囊10成型时即可自动完成粘接。环形凹槽能够增大弹性膜囊10与连接盘9的接触面积,保证环形凹槽与弹性膜囊10连接的可靠性和密封性。所述弹性膜囊10和连接盘9均采用硅橡胶材料浇铸而成,具体材料为dragonskin硅胶。弹性膜囊10内侧面的两端分别包裹住两个刚性支架8外端的通气接口,且超出刚性支架8的通气接口一段;弹性膜囊10的外端边缘与对应的管道通过硅胶粘接剂粘接。

当弹性膜囊10内的气压升高时,升高的气压推动弹性膜囊10外端超出刚性支架8通气接口的部分膨胀,继而使得气体进入弹性膜囊10与刚性支架8之间的间隙,使得弹性膜囊10膨胀。当软体补气阀5的进气口11输入压缩空气时,逆止片13受压被顶开,若发生回流,逆止片自动关闭堵住通气孔12,可进一步防止回流;软体补气阀的进出气口的弹性膜囊10。当压缩气体通入软体补气阀5时,弹性膜囊10会由于内部压力的增大而发生膨胀,将一部分压力势能转化为弹性势能进行储存,从而减小软体补气阀5内部的压强,保证气动柔性驱动器4内的气体能够顺利进入软体补气阀5中。

空气压缩机1通过单向阀6吸入外部空气;单向阀6用于防止空气回流至大气中,压缩机将外部空气压缩并储存于空气罐2中;通过控制阀3来控制空气罐中的高压气体向气动柔性驱动器4流入,从而控制气动柔性驱动器的工作;本发明采用常见的人工肌肉pam作为气动柔性驱动器的示例进行说明。当需要释放pam中的气体恢复原状时,本发明采用了一种心包状软体补气阀进行压缩气体的收集,并通向空气压缩机进一步循环利用,减少了能量消耗,大大提高了气动系统的工作效率,并且避免了压缩气体直接排放而产生的噪声。

将传统无空气收集装置的气动系统原理与本发明系统原理进行对比分析,进一步解释本发明的优势。如图6所示,本发明的空气再循环系统的质量流量可由伯努利方程导出:

其中,ph是软体补气阀的压力,ρ是空气密度,g是重力加速度,hh是软体补气阀的高度,vh是软体补气阀内的流速,pc是空气压缩机入口压力,hc是压缩机高度,vc(b)是从软体补气阀到空气压缩机入口的流速。假设vh=0,hh=hc,式子可化简为:

因此,在图6中,从软体补气阀到压缩机入口的质量流量可以表示为

其中,是从软体补气阀到压缩机入口的质量流量,atube是管道的截面积。

同理,图5中常规气动系统的质量流率可以表示如下:

其中,是从大气到压缩机入口的质量流率,而patm是大气压的表压。

当再循环压缩空气流入软体补气阀时,补气阀的压力高于大气压,即满足以下条件:ph>patm,因此由式和可得

在压缩机运行期间,空气罐2的压力变化取决于流向空气压缩机的质量流量,本发明的软体补气阀使得流向空气压缩机的质量流量增大,增压性能增强,空气压缩机休息时间增加,提高了气动系统的整体效率。

此外,将高压压缩空气直接循环进入压缩机,容易使得压缩机过载,并且导致pam中残余压力过高,对压缩气体的回收以及pam的工作状态产生重大影响,本发明不仅提高了气动系统效率,还针对pam中残余气体压力进行了降压处理,便于压缩气体的回收并且不影响pam自身的工作状态。

对于传统的气动系统(图5),压缩空气排放后pam的残余压力(表压)可根据波义耳定律表示为

其中ppam(a)(td)是常规气动系统中排气后pam残余压力,ppam(a)(td-dt)是常规气动系统中排气之前pam内的压力,vpam(a)是pam的体积,而是大气体积。

同理,本发明带有软体补气阀的空气再循环系统中(图6),压缩空气收集后pam中的残余压力,可以表示为

其中,ppam(b)(td-dt)是本发明再循环系统pam排气前内部压力,vpam(b)是pam的体积,vh是软体补气阀的体积。由式和可以发现ppam(b)(td)>ppam(a)(td),本发明pam中气体排出后残余压力偏大,再循环系统在收集压缩气体来提高工作效率的同时,增加了pam中的残余压力,但由于该残余压力在弹性膜囊10膨胀时减小,故相比于使用刚性的压力缓存罐,本发明对pam的控制性能的负面影响较小。

具体来说,当回收压缩气体时,弹性膜囊10向外膨胀,补气阀体积vh增大,从而pam排气后中的残余压力ppam(b)(td)减小,起到降压作用,避免了pam原本的控制性能变差。并且压缩机工作时,如果没有刚性支架,软体补气阀会由于空气流失而体积严重减小,这就导致每次循环过程中都要先补偿补气阀的体积,降低了工作效率,因此采用心包状刚性支架,来避免工作效率的降低。

本发明中软体补气阀的制造方法如下:

步骤一、制造铸模模具。通过3d打印铸造模具,材料为abs树脂聚合物;铸模模具包括连接盘模具14、补气阀外模15和两个刚性支架8;打印完毕后,采用砂纸依次对模具进行打磨处理。连接盘模具14用于铸造连接盘9,其型腔形状与连接盘9对应。

如图7所示,连接盘模具14由型芯14-1和左右排布的两个对称的连接盘半外模14-2组成,从而便于开模。两个连接盘半外模14-2拼接后形成圆盘状的型腔。型芯14-1的形状与连接盘上的中心通气孔和逆止片与连接盘主体之间的缝隙对应,使得逆止片只有一侧边缘与连接盘连接,形成单向阀的效果。

如图8所示,补气阀外模15有上模和下模组成;上模和下模共同形成的型腔与软体补气阀的外形对应。

步骤二、配置硅橡胶溶液。按50:1的比例将硅胶溶液(dragonskin10)与其对应的固化剂混合置于容器中,并利用电磁搅拌机搅拌均匀。将配置好的硅橡胶溶液放在真空泵中进行消泡处理。

步骤三、一次浇铸。对连接盘模具14内壁喷涂脱模剂,然后组装固定好,将硅橡胶溶液缓慢注入连接盘模具14中。在室温条件下固化;固化后拆开连接盘模具14即可得到连接盘9。之后,采用硅胶粘接剂将连接盘9两侧面分别与两个刚性支架8的内端面分别粘接,形成软体补气阀的主体。

步骤四、二次浇铸。对两个刚性支架8的外侧面以及补气阀外模15的上、下模的型腔喷涂脱模剂,并用塞子堵住两个刚性支架外端的通气接头8-1。然后将步骤三中粘接好的刚性支架、连接盘与补气阀外模15的型腔安装固定(可以通过中心杆支撑其中一个刚性支架,使得刚性支架、连接盘线控在补气阀外模15的型腔内);将硅橡胶溶液缓慢注入补气阀外模15的型腔和刚性支架间的空隙中,在室温条件下固化。浇铸的硅橡胶固化后,将补气阀外模15拆开,在形成的弹性膜囊10的两端端部开设通气孔,并将刚性支架8两端的塞子取出,制造完成。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1