电磁阀和液压缸可靠性的综合节能试验装置及方法

文档序号:8919385阅读:667来源:国知局
电磁阀和液压缸可靠性的综合节能试验装置及方法
【技术领域】
[0001]本发明涉及一种电磁阀和液压缸可靠性指标的试验装置,尤其涉及一种可同时检测电磁阀和液压缸可靠性指标的综合节能试验装置及方法。
【背景技术】
[0002]液压缸是将液压能转变为机械能的、做直线往复运动(或摆动运动)的液压执行元件,基本上由缸筒和缸盖、活塞和活塞杆、密封装置、缓冲装置与排气装置组成。它结构简单、工作可靠。用它来实现往复运动时,可免去减速装置,并且没有传动间隙,运动平稳,因此在各种机械的液压系统中得到广泛应用。
[0003]电磁阀是用电磁控制的工业设备,属于执行器,主要用来控制流体的自动化基础元件,并不限于液压、气动。用在工业控制系统中调整介质的方向、流量、速度和其他的参数。电磁阀可以配合不同的电路来实现预期的控制,而控制的精度和灵活性都能够保证。电磁阀有很多种,不同的电磁阀在控制系统的不同位置发挥作用,最常用的是单向阀、安全阀、方向控制阀、速度调节阀等。
[0004]电磁阀和液压缸分别作为液压系统的重要控制元件和执行元件,其可靠性水平直接影响到整个液压系统的可靠性和安全性。目前国内外的厂家和用户在对电磁阀和液压缸进行可靠性试验时,基本上都是沿用过去几十年的标准和方法。此种方法单次试验的样本数量有限,并且每个试验回路只能测试一类液压元件。当被测样本数目较大或被测样本类型较多时,需多次进行可靠性试验并搭建不同的可靠性试验台架,则要耗费大量的人力、物力以及时间等资源。

【发明内容】

[0005]本发明所要解决的技术问题是针对上述现有技术现状而提供一种可同时测试二个电磁阀样本和四个液压缸样本的电磁阀和液压缸可靠性的综合节能试验装置,具有单次试验样本种类多、数量多、耗时短、效率高且节约能源的优点,起到了综合节能的效果。
[0006]本发明解决上述技术问题所采用的技术方案为:一种电磁阀和液压缸可靠性的综合节能试验装置,其特征在于:包括由步进电机驱动工作的液压泵,液压泵的进油口通过第一截止阀接油箱,液压泵的压力油口接第一单向阀;第一单向阀的出油口分出两支油路,一支路依次接第一压力表、第一压力传感器和压油过滤器的进油口,另一支路接溢流阀后回油箱来调节系统的工作压力;压油过滤器的出油口分出三支油路,其中一支路接第一测试模块中第一被测电磁阀的P油口,另一支路接第二测试模块中第二被测电磁阀的P油口,最后一支路接蓄能器组件的进油口 ;第一测试模块中,第一被测电磁阀的A油口并联接有第二压力表、第二压力传感器、第二截止阀,第一被测电磁阀的A油口经第二截止阀后与第一液压缸的无杆腔连通;第一被测电磁阀的B油口并联接有第三压力表、第三压力传感器、第三截止阀,其中第一被测电磁阀的B油口经第三截止阀后与第二液压缸的无杆腔连通;且第一液压缸和第二液压缸的活塞杆进行对顶连接,并在连接处安装有第一位移传感器;第二测试模块中,第二被测电磁阀的A油口并联接有第四压力表、第四压力传感器、第四截止阀,其中第二被测电磁阀的A油口经第四截止阀后与第三液压缸的无杆腔连通;第二被测电磁阀的B油口并联接有第五压力表、第五压力传感器、第五截止阀,其中第二被测电磁阀的B油口经第五截止阀后与第四液压缸的无杆腔连通;另外第三液压缸和第四液压缸的活塞杆进行对顶连接,并在连接处安装有第二位移传感器;第二被测电磁阀的T油口同第一被测电磁阀的T油口的出油合流后最终回到油箱。
[0007]上述第二被测电磁阀的T油口同第一被测电磁阀的T油口的出油合流依次接节流阀和冷却器后流回油箱。节流阀安装在系统回油路上,为被测的液压缸提供回程背压,使被测的液压缸平稳运动;冷却器的设置,使系统油温维持稳定。
[0008]上述第一液压缸的内泄油路经管道引出后连接第一量杯,第一液压缸的泄气口经管道引出后连接第二量杯;第二液压缸的内泄油路经管道引出后连接第三量杯,第二液压缸的泄气口经管道引出后连接第四量杯;第三液压缸的内泄油路经管道引出后连接第五量杯,第三液压缸的泄气口经管道引出后连接第六量杯;第四液压缸的内泄油路经管道引出后连接第七量杯,第四液压缸的泄气口经管道引出后连接第八量杯。因液压缸的泄油有两处,主要有内泄露及从泄气口泄露,故每个液压缸接有两个量杯。
[0009]上述蓄能器组件包括蓄能器及用以检测蓄能器的充液压力的第六压力表。蓄能器组件用于吸收由于被测电磁阀频繁换向导致的液压冲击,第六压力表用于检测蓄能器的充液压力。
[0010]上述油箱内部安装有对油液加热的加热器,以及用以以检测油液温度的温度传感器。温度传感器用于检测油箱油温是否达到电磁阀和液压缸加速寿命试验的温度要求。加热器和温度传感器的配合使用使得油箱油温达到使用要求。
[0011]一种采用前述试验装置的试验方法,包括以下步骤:
[0012]步骤1、开启试验装置,打开加热器,经过短时间跑和,待系统压力、油液温度等参数指标满足试验要求后,开始试验记录;
[0013]步骤2、对液压缸进行试验,在无负载工况下,通过调节溢流阀8使第一液压缸14的无杆腔压力逐渐升高至第一液压缸14起动时,由第二压力传感器13记录下的压力即为第一液压缸14的最低起动压力;同理,第三压力传感器18记录的是第二液压缸21的最低起动压力,第四压力传感器33记录的是第三液压缸27的最低起动压力,第五压力传感器34记录的是第四液压缸31的最低起动压力;
[0014]步骤3、当IDT和2DT同时失电,待第一液压缸14和第三液压缸27的活塞杆停在行程极限位置后,调节溢流阀8至系统压力达到1.5倍试验压力P,保压2min,观察被测液压缸是否出现异常状况;当IDT和2DT同时得电,待第二液压缸21和第四液压缸31的活塞杆停在行程极限位置后,保压2min,观察试验现象并记录试验数据;
[0015]步骤4、当IDT失电,由第二压力传感器13和第三压力传感器18的压力数据可绘制第一液压缸14的负载效率特性曲线;当IDT得电,由第二压力传感器13和第三压力传感器18的压力数据可绘制第二液压缸21的负载效率特性曲线。同理,通过控制第二被测电磁阀37的得失电状态,可由第三压力传感器18和第四压力传感器34的压力数据分别绘制出第三液压缸27和第四液压缸31的负载效率特性曲线。
[0016]步骤5、由第一位移传感器17记录第一液压缸14和第二液压缸21的位移响应曲线,由第二位移传感器29记录第三液压缸27和第四液压缸31的位移响应曲线。
[0017]步骤6、对电磁阀和液压缸进行加速寿命试验,调节溢流阀8至系统压力达到规定的试验压力P,将第一被测电磁阀6和第二被测电磁阀37的换向频率值设定为大于正常工况下的换向频率值,使试验得到加速效果;
[0018]步骤7、由被测电磁阀阀口的压力信号和电磁铁电流信号可分析出第一被测电磁阀6和第二被测电磁阀37的的瞬态响应特性;通过比较被测电磁阀入口处的第一压力传感器38和电磁阀出口处的其它压力传感器的压差大小,可以判定被测电磁阀的阀口开度和动作情况;
[0019]步骤8、由于被测电磁阀和液压缸的泄漏量是微小量,很难通过传感器测量,而通过精密称重仪器或量筒可测量微小油滴的质量,因而在测量电磁阀阀口和液压缸各处的泄漏时需要试验人员测量并手动输入;由第一量杯和第二量杯测量第一液压缸的泄漏量;由第三量杯和第四量杯测量第二液压缸的泄漏量;由第五量杯和第六量杯测量第三液压缸的泄漏量;由第七量杯和第八量杯测量第四液压缸的泄漏量;
[0020]步骤9、试验结束后,提取计算机中存档的压力、位移传感器数据和手动记录的泄漏量数据。
[0021]通过提取计算机中存档的压力、位移传感器数据和手动记录的泄漏量数据,便可通过数学方法计算出被测电磁阀和液压缸样本的可靠性特征数据。
[0022]试验过程中,观察被测电磁阀和被测液压缸是否有明显外泄漏现象;如果电磁阀和液压缸出现故障,记录下此时的失效时间;关闭故障液压缸进油口前的截止阀,可在线更换故障液压缸,无需停机等待。
[0023]与现有技术相比,本发明的优点在于:<
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1