过电流检测电路及其延迟电路的制作方法

文档序号:5946309阅读:218来源:国知局
专利名称:过电流检测电路及其延迟电路的制作方法
技术领域
本发明涉及保护锂离子电池等能够充电的充电电池的充电电池保护电路,尤其是涉及用于该充电电池保护电路的延迟电路。
背景技术
一般,这种充电电池的保护电路是与充电电池一起被收放在具有正极端子和负极端子的电池单元(电池组)内。在使用之际,在电池单元的正极端子和负极端子之间连接有作为负载的照相机等装置。这样,负载被连接到电池单元时,电池单元内的充电电池就处于放电状态,驱动负载使之工作。另一方面,在对电池单元内的充电电池进行充电之际,充电器被连接在电池单元的正极端子和负极端子之间,充电电池处于充电的状态。
在这里,在被收放在电池单元内的充电电池上根据各种装置而连接有镍镉电池、镍汞电池、锂离子电池等各种电池。其中,当镍镉电池和镍汞电池在电池容量未使用到为0就充电的话,即,当重复浅的放电·充电时,具有电池能力会降低这样的特性。这样,将由于重复浅的放电·充电导致电池能力下降的效应称之为记忆效应。
另一方面,锂离子电池没有上述的记忆效应,虽然作为充电电池很理想,但一旦因过放电使电池电压比规定电压更低时,电池的构成物质变质,变成过放电状态而使电池寿命就变短。另外,在锂离子电池中,利用充电器充电的过程中,即使达到充满电的状态、电池电压还持续上升,往往成为过充电状态。这样,一旦成为过充电状态,在锂离子电池中,因锂金属的析出电极间就有可能发生短路。还有,当锂离子电池的正极端子和负极端子之间处于短路状态时,则往往流过很大的放电电流,成为过电流状态。
在电池单元里和充电电池一起装入的充电电池保护电路,特别是锂离子电池用的充电电池保护电路具有保护充电电池的功能,它检测上述的过充电状态、过放电状态、及过电流状态,一旦分别检测出这些状态时,则通过断开充电电流及放电电流来进行保护。因此,充电电池保护电路具有过充电检测电路、过放电检测电路、及过电流检测电路。
另一方面,在充电中或放电中,在短时间内,电流或电压有时因某种原因而有很大的变动。即使发生上述短时间内的瞬时变动,实际上,由于不会成为过充电、过放电、或过电流状态,因而`,有必要预先将过充电检测电路、过放电检测电路、及过电流检测电路置于不因这样的短时间的电流、电压的变动而动作的状态。为此,在这些过充电检测电路、过放电检测电路、及过电流检测电路中分别设置了处于不感应状态的不感应时间设定电路,即、为了实现不因电流、电压的短时间变动而进行保护动作,使各检测电路仅在一定时间处于不动作状态。具体地说,作为这些不感应时间设定电路而设置了延迟电路,上述的一定时间被设定为延迟电路的延迟时间。
在这些充电电池保护电路的过充电检测电路、过放电检测电路、及过电流检测电路中,作为用于过电流检测电路的延迟电路有专利文献1-日本专利申请2002-309470说明书中所记载的延迟电路。所提出的延迟电路具有以下结构,当检测过电流时,来自时钟振荡器的时钟信号就开始计数,对时钟信号计数到规定的值,即使计数到规定的值还检测到过电流的话,就输出有效检测信号。这时,过电流检测电路通过被连接到检测流过作为负载被连接到电池单元的装置的负载电流的电阻,利用过电流检测电路检测出该电阻的两端电压,来控制延迟时间。在该结构中,即使过电流的检测信号有瞬时的变动,也能够正确地计数直到规定的值。
参照图6,所示的是现有的被设置在含有锂离子电池等充电电池的电池单元内的过电流检测电路10的其它的例子。图示的电池单元11具有作为输出端口的正极端子101和负极端子102,在该正极端子101和负极端子102之间放电时连接有照相机等负载,充电时连接有充电器。
图示的电池单元11的特征仅在于过电流检测电路10、锂离子电池等充电电池11、电流检测电阻112、及放电控制开关113,然而,实际上,在过电流检测电路10之外,在电池单元11内还设置有未图示的过放电检测电路及过充电检测电路。为了简化说明,这些过放电检测电路及过充电检测电路在图6中省略了。
在电池单元11的正极端子101上连接有构成放电控制开关113的P通道FET的漏极,在其源极连接有充电电池111的阴极。另一方面,在充电电池111的阳极和负极端子102之间连接有电流检测电阻112,在该电流检测电阻112的两端连接有过电流检测电路10。
具体地说,过电流检测电路10是由过电流检测部20和设定了规定的延迟时间的延迟电路21所构成,过电流检测部20被连接在电流检测电阻112的两端,由过电流检测部20检测因流过该电流检测电阻112的电流所产生的电压降。
过电流检测部20具有将阈值电压设定为基准电压的电压比较器,在该电压比较器中,将电流检测电阻112两端的电压降与基准电压进行比较。在本例中,电流检测电阻112两端的电压降比基准电压更小时,电压比较器就向延迟电路21输出逻辑“0”的电平的输出信号,另一方面,电流检测电阻112两端的电压降比基准电压更大时,判定为过电流,就向延迟电路21输出逻辑“1”的电平的输出信号。
在这里,在电池单元的正极端子101和负极端子102之间连接有负载,充电电池111处于放电的状态。在该状态,过电流检测部20向延迟电路21输出逻辑“0”的电平的输出信号,来自延迟电路21的低电平信号被供给构成放电开关113的P通道FET。结果,在没有检测到过电流的状态下,放电控制开关113处于接通的状态。
另一方面,当流过负载的电流变大,电流检测电阻112两端的电压降超过阈值时,过电流检测部20就以高电平信号为输出信号输出到延迟电路。延迟电路21,即使在经过了规定的延迟时间的时刻还得到来自过电流检测部20的高电平信号时,就通过将高电平信号输出到放电控制开关113,使放电控制开关113处于断开状态,结果放电就停止。
这样,延迟电路21进行监视过电流状态在规定的延迟时间内延续的动作。通过设置该延迟电路21,只要在未达到规定延迟时间的时间内,即使产生暂时的过电流状态,延迟电路21也不将高电平信号输出到放电控制开关113。换句话说,只要是过电流状态在规定的延迟时间时内延续的情况下,放电控制开关113处于断开的状态。在该结构中,即使过电流状态持续短时间,由于放电控制开关113不处于接通的状态,因而能够防止误检测出暂时产生的过电流。
这种作为负载连接在电池单元上的装置负载,在装置工作时和不工作时之间变动很大,结果,具有在放电状态流过负载的电流的变动也很大的倾向,在极端的情况下,在正极端子和负极端子之间还会有短路。
图6所示的电流检测电阻112的电阻值,可以预测到因放电控制开关113产生的损失问题,以便于抑制因电流检测电阻112引起的损失。另一方面,图6所示的延迟电路的延迟时间与负载电流的大小无关是一定的。这样,在使用具有一定的延迟时间的延迟电路时,在一定的延迟时间内,大的负载电流瞬间地流过构成电池单元的放电控制开关113的FET。结果,对构成该放电控制开关113的FET产生坏的影响,根据情况的不同,有时还会导致FET的损坏。
参照图7具体说明上述之点。图7表示图6所示的过电流检测电路10的特性,图7中,横轴表示流过电流检测电阻112的电流I,纵轴表示延迟电路21的延迟时间T。从图中可以清楚看出,当流过电流检测电阻112的电流I超过设定电流水准Id时,延迟电路21具有仅使过电流检测部20的输出延迟一定的延迟时间Td的特性。还有,流过电流检测电阻112的电流I,实际上,在过电流检测部20中被变换到为电流检测电阻112的两端电压,以将该两端电压与阈值电压比较。
使用了具有图示的特性的过电流检测电路10时,当超过设定电流水准Id的电流暂时流过电流检测电阻112,在一定的延迟时间内,返回到原来的正常的电流水准时,放电控制开关113与延迟电路21的输出相比在一定的时间内维持在接通状态。因此,大的负载电流流过放电控制开关113,结果,往往损坏构成放电控制开关113的FET。
另一方面,如上述的日本专利申请2002-309470说明书中所述的延迟电路那样,在利用计数器对来自时钟振荡器的时钟进行计数的形式的延迟电路中,可以设想通过预先设定多个计数器的计数值,能够使不感应时间数字式地台阶式变化。但是,这样一来,在数字式地使不感应时间变化的延迟电路中,不能根据负载电流实时地改变延迟时间。因此,在有短路等那样负载电流急剧地变化时,上述的延迟电路不能跟随该变化,不能防止构成放电控制开关的元件的破坏。

发明内容
本发明的目的是提供一种过电流检测电路,该电路即使在电流瞬时并且急剧地变化时也能够防止电池单元内的内部元件的破坏。
本发明的另一目的是提供一种电池单元,该电池单元具有即使产生急剧的电流变化也能够防止放电控制开关的破坏的过电流检测电路。
本发明的再一目的是提供一种延迟电路,该延迟电路能够根据负载电流连续地使延迟特性变化。
采用本发明的第1方案,可以获得具有以下特征的过电流检测电路,在设置了具有一对输入输出端口、充电电池、连接在上述一对输入输出端口的一个端口和上述充电电池的一个电极之间的放电控制开关、连接在上述一对输入输出端口的另一个端口和上述充电电池的另一个电极之间的电流检测电阻的电池单元的过电流检测电路中,具有连接在上述电流检测电阻的两端、将该电流检测电阻的两端电压与规定的基准电压进行比较并输出比较结果的过电流检测部;当上述电流检测电阻的两端电压显示超过上述基准电压的信号作为上述比较结果被给出时,就使该比较结果仅延迟规定的延迟时间,当超过该规定延迟时间、上述两端电压超过上述基准电压时,就使上述放电开关断开的延迟电路;上述延迟电路具有监视在上述放电控制开关的接通电阻的两端所产生的电压降的监视装置;和具有因上述接通电阻中流过的电流所产生的上述接通电阻间的电压降超过规定的电压时,延迟时间具有随着流过上述接通电阻中的电流变大而从上述规定的延迟时间模拟地减少的特性的模拟延迟部。
采用本发明的第2方案,可以获得具有以下特征的过电流检测电路,上述监视装置由连接在上述放电控制开关两端的、输出与上述接通电阻的电压降相应的电流的差动电路所构成;另一方面,上述模拟延迟部具有,由来自上述差动电路的电流进行电流控制的电流源,与该电流源串连的电容,及将该电流源和电容的共同连接点的电压与预定的电压进行比较的比较电路。
采用本发明的第3方案,可以获得具有以下特征的过电流控制电路,上述放电开关由FET构成。
采用本发明的第4方案,可以获得具有以下特征的电池单元,具有一对输入输出端口、充电电池、连接在上述一对输入输出端口的一个端口和上述充电电池的一个电极之间的放电控制开关、连接在上述一对输入输出端口的另一个端口和上述充电电池的另一个电极之间的电流检测电阻;连接在上述电流检测电阻的两端、将该电流检测电阻的两端电压与规定的基准电压进行比较,并输出比较结果的过电流检测部;一旦上述电流检测电阻的两端电压显示超过上述基准电压的信号作为上述比较结果被给出时,使该比较结果仅延长规定的延迟时间,当超过该规定延迟时间、上述两端电压超过上述基准电压时,就使上述放电开关断开的延迟电路;上述延迟电路具有,监视在上述放电控制开关的接通电阻的两端所产生的电压降的监视装置,和具有因流过上述接通电电阻中的电流所产生的上述接通电阻间的电压降超过规定的电压时,延迟时间随着流过上述接通电阻中的电流变大而从上述规定的延迟时间模拟地减少的特性的模拟延迟部。
采用本发明的第5方案,可以获得具有以下特征的过电流检测电路,在设置了具有一对输入输出端口、充电电池、连接在上述一对输入输出端口的一个端口和上述充电电池的一个电极之间的放电控制开关、连接在上述一对输入输出端口的另一个端口和上述充电电池的另一个电极之间的电流检测电阻的电池单元的过电流检测电路中,具有连接在上述电流检测电阻的两端、将该电流检测电阻的两端电压与规定的基准电压进行比较并输出比较结果的过电流检测部;当上述电流检测电阻的两端电压显示超过上述基准电压的信号作为上述比较结果被给出时,就使该比较结果仅延迟规定的延迟时间,当超过该规定延迟时间、上述两端电压超过上述基准电压时,就使上述放电开关断开的延迟电路;上述延迟电路具有监视在上述电流检测电阻的两端所产生的电压降的监视装置;和具有因流过上述电流检测中的电流所产生的上述电压降超过设定的电压时,延迟时间随着流过上述电流检测电阻中的电流变大而从上述规定的延迟时间模拟地减少的特性的模拟延迟部。
采用本发明的第6方案,可以获得具有以下特征的延迟电路,具有供给与规定的电阻元件两端的电压降相对应的电流的电流源,与该电流源串连的电容,及将在该电流源和电容的共同连接点的电压与预定的电压进行比较的比较电路;可以模拟地改变延迟时间。


图1是用于说明本发明的一个实施例的电池单元的构成的方框图。
图2是表示带有含在图1所示的电池单元的电压检测功能的延迟电路的特性图。
图3是具体地表示图1所示的带电压检测功能的延迟电路的一部分结构的电路图。
图4是详细说明图3所示的电路的一部分的电路图。
图5是表示本发明的另一实施例的电池单元的构成的方框图。
图6是说明现有的电池单元的构成的方框图。
图7是说明图6所示的过电流检测电路的特性图。
具体实施例方式
参照图1,所示的是本发明的一个实施例的电池单元11a的大致结构。图1所示的电池单元11a在使用具有检测出由放电控制开关113的接通电电阻产生的电压降的功能的带电压检测功能的延迟电路25作为过电流检测电路20a这一点上,与图6的过电流检测电路20不同。如图1所示,带电压检测功能的延迟电路25被连接到由P通道FET所构成的放电控制开关113的输入输出端口(即,P通道FET的源极、漏极),检测出由该P通道FET的接通电电阻的电压降,具有根据该电压降使延迟时间模拟地,即连续地变化的特性。
参照图2,所示的是图1给出的带电压检测功能的延迟电路25的特性,横轴是流过放电控制开关113的电流I,纵轴是带电压检测功能的延迟电路25的延迟时间T。从图2可以清楚看出,当流过放电控制开关113的电流I超过设定电流水准If时,该延迟电路25就处于使过电流检测部20a的输出延迟规定的延迟时间Td的状态。还有,一旦电流I变大,带电压检测功能的延迟电路25的延迟时间就根据电流I水准的增加,从Td至Ta模拟地,即连续地变短。通过使用具有这种特性的带电压检测功能的延迟电路25,在大电流I短时间瞬间地流过放电控制开关113时,极短的延迟时间后,能够使放电控制开关113处于断开的状态,其结果,能够防止构成放电开关113的FET的破坏。
图1所示的构成放电开关113的P通道FET具有连接到正极端子101的漏极、连接到充电电池111阴极的源极、及连接到带电压检测功能的延迟电路25的门极,电流检测电阻112与负极端子102连接。
另一方面,放电控制开关113由N通道FET构成时,可以采用源极连接在负极端子102、漏极连接在充电电池111的阳极的结构,同时对于门极给与与图1相反的极性的信号的结构。另外,该场合,电流检测电阻112被连接在正极端子101和充电电池111的阴极之间。由于该结构本身已众所周知,这里就不再详述。
其次,参照图3,就图1所示的带电压检测功能的延迟电路25的具体结构进行说明。图示的带电压检测功能的延迟电路25具有作为监视由P通道FET所构成的放电控制电路113的输入输出端口间的接通电电阻的电压降的监视电路的差动电路251。即,差动电路251被连接在P通道FET的源极和漏极之间,监视流过该FET的接通电电阻的电流所产生的电压降,将监视到的电压降变换为电流,输出到延迟部。图3所示的延迟部,由于具有本如图2所示的模拟的延迟特性,在这里就称为模拟延迟部。在这里,P通道FET的源极及漏极的电压分别为Vcc及CS。
图示的模拟延迟部具有由来自差动电路251的电流进行电流控制的电流源252。电容253的一端与该电流源252串连,电容253的另一端接地。另外,电流源252和电容253的共同连接点连接在比较电路254的一端的输入端口,在该比较电路254的另一端的输入端口连接有供给预定的电压的电压源255。在该构成中,电容器253通过来自电流源252的电流充电,为此,比较电路254的一端的输入端口的电压随电流源252的电流而上升。
在这里,在流过放电控制开关113的电流急剧地增加时,差动电路151的电流也急剧地增加,结果从电流源252供给电容器253的电流也急剧地增加。因此,电容器253的电压快速地上升、以短时间就超过电压源255的电压,在短时间内从比较电路255输出输出信号。
若结构为根据比较电路254的输出信号及过电流检测部的输出信号,使放电控制开关113处于断开状态,则可一构成该放电控制开关113在短时间内从接通的状态切换为断开的状态,具有短的延迟时间的延迟电路。
另一方面,流过放电控制电路113的电流缓慢地增加时,差动电路251的电流也慢慢增加,从电流源252供给电容器253的电流也慢慢增加。因此,由于电容器253的电压也慢慢上升,因而要超过电压源255所设定的电压需要较长的时间。结果,可得到如图2所示的电流I、延迟时间T的特性。
参照图4,所示的是图3给出的电流源252的具体的结构例子。如图4所示,电流源252具有,供给与来自差动电路251的输出相应的电流的电流源电路31,由PNP三极管Tr1、Tr2、Tr3所构成的第1电流镜像线路,及由NPN三极管Tr4、Tr5所构成的第2电流反射镜电路。三极管Tr1、Tr2、及Tr3的发射极分别连接有电阻,通过该电阻,可施加电压Vcc、CS、及Vcc。
当与来自差动电路251的输出信号相应的电流从电流源电路31供给第1电流反射镜电路时,正比于流过三极管Tr1的电流的电流就流过三极管Tr2、Tr3。另外,由于三极管Tr2、Tr3连接在第2电流反射镜电路(Tr4、Tr5)上,在该三极管Tr2、Tr3中流过互成比例的电流。结果,连接在三极管Tr3和Tr5的共同连接点的电容器253就以对应于差动电路251的输出信号的电流予以充电。
参照图5来说明本发明的另一实施例的电池单元11b。图示的电池单元11b的过电流检测电路10b具有,有着和图1同样构成的过电流检测部20a,及连接在该过电流检测部20a、同时还连接在电流检测电阻112的两端的带电压检测功能的延迟电路25a。这样,在图示的带电压检测功能的延迟电路25a上除了施加电流检测电阻112的两端电压以外,还具有与图1所示的电池单元11a同样的结构。图5所示的带电压检测功能的延迟电路25a具有与图3所示的电路25同样的构成,也可以将差动电路251的两个输入端口连接到电流检测电阻112的两端。
上述的实施例就主要以锂离子电池作为充电电池使用时进行了说明,然而本发明对此并没有任何限定,也可以应用于镍镉电池、镍汞电池等。
采用本发明,根据FET或电流检测电阻的两端的电压降,通过使延迟时间模拟地可变,能够防止因极短的时间内产生的急剧的电流变化而使大电流流过FET,与数字式地使延迟时间变化时相比,具有以高速检测过电流,可防止FET的损坏的优点。
权利要求
1.一种过电流检测电路,其特征在于,在设置了具有一对输入输出端口、充电电池、连接在上述一对输入输出端口的一个端口和上述充电电池的一个电极之间的放电控制开关、连接在上述一对输入输出端口的另一个端口和上述充电电池的另一个电极之间的电流检测电阻的电池单元的过电流检测电路中,具有连接在上述电流检测电阻的两端、将该电流检测电阻的两端电压与规定的基准电压进行比较并输出比较结果的过电流检测部;当上述电流检测电阻的两端电压显示超过上述基准电压的信号作为上述比较结果被给出时,就使该比较结果仅延迟规定的延迟时间,当超过该规定延迟时间、上述两端电压超过上述基准电压时,就使上述放电开关断开的延迟电路;上述延迟电路具有监视在上述放电控制开关的接通电阻的两端所产生的电压降的监视装置;和具有因上述接通电阻中流过的电流所产生的上述接通电阻间的电压降超过规定的电压时,延迟时间具有随着流过上述接通电阻中的电流变大而从上述规定的延迟时间模拟地减少的特性的模拟延迟部。
2.如权利要求1所述的过电流检测电路,其特征在于,上述监视装置由连接在上述放电控制开关两端的、输出与上述接通电阻的电压降相应的电流的差动电路所构成;另一方面,上述模拟延迟部具有,由来自上述差动电路的电流进行电流控制的电流源,与该电流源串连的电容,及将该电流源和电容的共同连接点的电压与预定的电压进行比较的比较电路。
3.如权利要求1或2所述的过电流检测电路,其特征在于,上述放电开关由FET构成。
4.一种电池单元,其特征在于,具有一对输入输出端口、充电电池、连接在上述一对输入输出端口的一个端口和上述充电电池的一个电极之间的放电控制开关、连接在上述一对输入输出端口的另一个端口和上述充电电池的另一个电极之间的电流检测电阻;连接在上述电流检测电阻的两端、将该电流检测电阻的两端电压与规定的基准电压进行比较,并输出比较结果的过电流检测部;一旦上述电流检测电阻的两端电压显示超过上述基准电压的信号作为上述比较结果被给出时,使该比较结果仅延长规定的延迟时间,当超过该规定延迟时间、上述两端电压超过上述基准电压时,就使上述放电开关断开的延迟电路;上述延迟电路具有,监视在上述放电控制开关的接通电阻的两端所产生的电压降的监视装置,和具有因流过上述接通电电阻中的电流所产生的上述接通电阻间的电压降超过规定的电压时,延迟时间随着流过上述接通电阻中的电流变大而从上述规定的延迟时间模拟地减少的特性的模拟延迟部。
5.一种过电流检测电路,其特征在于,在设置了具有一对输入输出端口、充电电池、连接在上述一对输入输出端口的一个端口和上述充电电池的一个电极之间的放电控制开关、连接在上述一对输入输出端口的另一个端口和上述充电电池的另一个电极之间的电流检测电阻的电池单元的过电流检测电路中,具有连接在上述电流检测电阻的两端、将该电流检测电阻的两端电压与规定的基准电压进行比较并输出比较结果的过电流检测部;当上述电流检测电阻的两端电压显示超过上述基准电压的信号作为上述比较结果被给出时,就使该比较结果仅延迟规定的延迟时间,当超过该规定延迟时间、上述两端电压超过上述基准电压时,就使上述放电开关断开的延迟电路;上述延迟电路具有监视在上述电流检测电阻的两端所产生的电压降的监视装置;和具有因流过上述电流检测中的电流所产生的上述电压降超过设定的电压时,延迟时间随着流过上述电流检测电阻中的电流变大而从上述规定的延迟时间模拟地减少的特性的模拟延迟部。
6.一种延迟电路,其特征在于,具有供给与规定的电阻元件两端的电压降相对应的电流的电流源,与该电流源串连的电容,及将在该电流源和电容的共同连接点的电压与预定的电压进行比较的比较电路;可以模拟地改变延迟时间。
全文摘要
本发明涉及保护锂离子电池等的可充电电池保护电路,尤其涉及该充电电池保护电路的延迟电路。本发明要解决的问题是,在具有延迟电路的过电流检测电路中,在延迟电路的延迟时间内,一旦因短路而流过大的电流时,大的电流流过放电控制开关会损坏放电控制开关。本发明的技术方案是,在具有延迟电路(25)、控制放电控制开关(113)的接通时间的过电流检测电路(20a)中,延迟电路(25)具有通过使延迟时间连续模拟地变化,对放电控制开关(113)的急剧的状态变化予以响应,能够迅速地使该放电控制开关(113)处于断开状态的结构。这样可防止大电流长时间流过放电控制开关(113),从而可防止该放电控制开关(113)的损坏。
文档编号G01R19/165GK1518183SQ200410039340
公开日2004年8月4日 申请日期2004年1月19日 优先权日2003年1月22日
发明者川越治, 德丸泰博, 博 申请人:三美电机株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1