油气藏勘探与监测的综合井中系统的制作方法

文档序号:6101994阅读:295来源:国知局
专利名称:油气藏勘探与监测的综合井中系统的制作方法
技术领域
本发明是对井眼所钻入的地层进行成像的方法。
背景技术
能源勘探和开发使用钻井进入地球内部的地层,同时需要监测和评估地层岩石的各种物理参数,例如井眼周围地层的电阻率和电导率。
电磁场激励的方法可以大致分为频率域激励和时间域激励。在频率域激励中,通常以固定的频率发射连续的波信号,不过该发射信号可以是多个叠加的频率。对于时间域激励,要对信号进行突然的切换,这里的信号可以是方波或者脉冲、三角波或者伪随机二进制序列信号。
频率域(连续波)激励的局限是发射器和接收器间很强的耦合。这个耦合(称为直接模式)是由于接收器检测到直接从发射器发射到接收器的磁场而导致的。直接模式信号可能比从地层接收到的信号还要强,使得难以准确测量从地层接收到的信号。提高率频率域分辨率的方法包括使用多线圈设备,例如传统的裸眼井感应仪器,其只能永久地测量裸眼井周围某一特定的地层范围。此类方法还包括利用阵列感应或侧向仪器来产生多组测量值,并将多目标处理技术应用于多组测量数值来提供大量我们所关注的选定地层。然而,由这些多目标处理技术得到的净信号与总测量信号相比较小。
当使用时间域激励的时候,突然切断激励电流,从而产生瞬态信号,被接收器检测到。另外由于在检测瞬态信号的时候不再产生发射器信号,所以可以对接收到的信号进行滤波以去除任何直接耦合模式信号的残留影响。不包含地层电阻率/电导率信息的直接模式信号被排除在瞬态测量之外。
能够在检测信号中按时间对地层的不同空间区域的响应进行分离能力是瞬变电磁方法的重要特征。根据楞次(Lenz)定律,在切断发射器电流的时候,响应于发射器电流的变化而感应出电流。感应电流的几何分布类似于被切断的发射器电流。在发射器电流被切断后,电流开始传播到外部地层。传播之后接着是衰减和扩散,其中,随后时间阶段的空间分辨率显著降低。然而已经证明,与频率域或直流信号数据相比,随后时间阶段中的瞬变场数据对远方地层电阻率更加敏感。
已经在矿产勘探工作中采用瞬变电磁测量技术来进行电阻率/电导率测量,其中使用了大表面偶极天线(通常有几百米长)和位于井中的电磁接收器,以测量井眼周围的地层以及井眼和地表之间的区域。这种矿产勘探工作中的应用很普遍。最近,地球物理工作中已经利用了这样地表上的大表面偶极天线,如美国专利No.5,467,018所示,该专利于1995年11月14日授权给Ruter等人。在此引入美国专利No.5,467,018作为参考。
直到最近,瞬变响应的建模还局限于相当简单的近似模型。然而,建立井眼瞬变电磁响应的实际模型的方法现在已经为人所知。例如,请见Tabarovsky,L.A.,Goldman,M.M.,Rabinovich,M.B.,Str交流k,K.-M.,1996,2.5-D modeling in Electromagnetic Method of Geophysics,Journal of Applied Geophysics 35,261-284。与这些数值建模领域进展的同时,高功率切换电容、放大器和数据传输都得到了较大的改善,因此使得时间域井中瞬变电磁技术成为可能。
用瞬变电磁方法进行测量所能达到的径向深度的限制主要是由测量的信噪比决定的,而这又与能够产生的脉冲能量相关。另外,如果能够通过其他地球物理数据,例如重力、地震波、测井数据或者相应的地球物理数据得到(或至少是近似)地层边界结构,则可以简化测量值的解释。这个信息可以用来保持某些部分的地层参数固定,而其他的参数通过数据得到解释。
也可以使用直流信号激励,但是测量到的信号是复合信号,包含来自地下不同区域构成的混合信号。分辨率因此相应降低。
1999年9月21日授予Payton等人的美国专利5,955,884公布了一个这样的系统,其中测井仪器包括至少一个电磁发射器和至少一个电场发射器,用来以选定的频率和波形向地层施加电磁能。电磁发射器最好是一个三轴发射器,包含三个正交的线圈,用来产生磁场,电场发射器最好是一个三轴发射器,包括三个正交的电偶极天线,用来产生电场。在此引入美国专利5,955,884作为参考。
其它已授权的可能与本发明的主题相关的专利包括但不限于美国专利5,543,715;5,841,280;5,862,513;5,883,515;5,870,690;6,147,496,在此引入作为参考。

发明内容
本发明的一个实施例包括一个利用钻井对地下地层成像的系统。利用直流测量来测量地层的电阻率,通过时间域信号或者交流测量来测量地层的电导率和电阻率。还测量地层的声波速度。把通过时间域电磁信号得到的直流电阻率测量值和电阻率测量值、通过时间域电磁信号得到的电导率测量值以及声波速度测量值组合在一起而生成地层的图像。
本发明还包括一种对井眼所钻入的地层进行成像的方法,包括使用通过直流信号检测的地层电阻率生成地层的初始模型;计算用于进行直流电阻率测量的仪器对所述初始模型的响应;将所计算的响应与电阻率测量结果进行比较;修正所述模型并且重复所述的计算和比较,直到计算响应与测量结果之间的差值达到最小值;基于使用电磁测量仪器进行的电阻率测量对修正后的模型进行细化;以及使用声波速度测量对细化后的模型进行约束。


由以下的说明和附图,可以更好地理解本发明及其优点,附图中图1是描述本发明操作的示意图。
图2是对实现本发明有用的一种仪器的示意图。
图3是对实现本发明有用的仪器详图。
图4是在仪器中心轴上安装环形电极组件的示意图。
图5环形支架电极总成示意图。
图6描述了时间域激励信号波形。
图7描述了电流偶极子的电流和电位线的分布。
图8描述了电极沿着井内的放置。
图9A,9B,9C描述了一个井眼成像的步骤。
图10是本发明一个实施实例的流程图。
虽然以下将结合本发明的优选实例对本发明进行描述,但可以理解本发明不限于此,而是包含落在所附权利要求范围内的所有替代、改进和同等。
具体实施例方式
本发明公布了一种用于生成井眼周围地下地层图像的系统。根据本发明的第一实例,使用一种裸眼井测井仪器系统来进行地层电阻率的直流信号测量、地层电导率和电阻率的电磁测量、以及地震波速度的测量。由地层电阻率的直流信号测量值生成一个初步的井图像,这里称作“伪截面”。然后可以利用电磁测量得到的地层电阻率和电导率值来进一步改善“伪截面”所描述的井下图像。然后还可以利用已有的地震波的地下速度剖面图,再加上地层电阻率的直流信号测量值、电磁电阻率和电导率测量值生成的地下图像来约束地面地震波数据。根据本发明,随着测井工作的进行,该井眼周围地下地层图像将逐渐行成。
在图1中,显示了根据本发明的井下测量仪器10放置在井14中,电缆12与井下测量仪器相连。井下测量仪器10可以使用常规的井下仪器扶正器13使井下仪器位于井内中央。以常规的操作方式由悬挂于井架16上的天滑轮支撑电缆12,同时电缆12盘绕在绞车滚筒20上,按照井下测井仪器的操作模式在井内上提和下放仪器10。电缆12是常规的多芯电缆,也可以是常规的电缆或光缆,来传输电源和电或光信号到井下仪器10,同时将井下仪器测量的数据传输到地面。在地面26,电缆12连接到地面测量记录单元电路接口22,同时地面数据采集单元24记录数据。一个地震波发生器25连接到地面数据采集单元24,同时井下仪器10也可以记录在地面产生的地震波信号。
图2更加详细地显示了仪器10。通常该仪器包括至少一个中央单元32和多个辅助单元30。图2只显示了6个辅助单元。然而,根据本发明,典型的裸眼井测井仪器可以包括少至1个辅助单元或者多至100或更多辅助单元。在图2中,中央单元32大致位于多个辅助单元30的中间。然而,中央单元实际上可以位于仪器10的任一端,或者位于仪器10上其它位置。
如图3所示,中央单元32通常包括至少2个3分量电磁发射器/接收器,如发射器/接收器48、50所示,各自包括3个线圈48a、48b、48c和50a、50b、50c,用来在三个正交方向上发射或者探测磁场。发射器/接收器线圈可以配置为发射或者探测磁场。中央单元通常包括2个电磁发射器/接收器,而辅助设备通常只包括一个电磁发射器/接收器,因为通常由中央单元来实现对邻井的测量。中央单元32通常也包括至少3个环形安装的电极组件44、45、46。虽然这些电极组件在图3中显示为位于中央单元32里面,但是环形安装的电极组件通常是安装在中央单元的中心轴49上,如图4所示。
中央单元32通常也包括一个地震波检测器56,它可以是一个三分量检波器,感应三个正交方向的地震波信号。在一些实施例中,检波器可以是一个包含压力传感的四分量检波器,例如水听器使用一个压力传感器和一个三分量检波器结合在一起。也可以使用四分量检波器,其中4个传感器相互成54度角,而不是像通常的三分量水听器那样成正交方向。各个传感器相互成54度角的四分量检波器具有在所有四个分量检波器中噪声灵敏度都相等的优点;即传感器对所有方向上的噪声具有相同的灵敏度。在一些实施例中,检波器可以是一个使用压力传感器和一个四分量检波器结合的五分量检波器。
中央单元32通常还包括定向单元52,它可以是众所周知的标准通用定向仪器,例如三维磁针计和/或陀螺仪。
如图3所示,每个辅助单元30通常包括至少一个三分量电磁发射器/接收器33,其包括三个线圈33a、33b和33c,用来在三个正交的方向上检测或者发射磁场。发射器/接收器线圈可以配置成作为发射器或者接收器。如果需要在同一个辅助单元中发射和接收磁信号,则还可以包括第二个三分量电磁发射器/接收器35,其包含线圈35a、35b和35c。
每个辅助单元通常也包括至少三个环形安装的电极组件,如图3所示的环形安装的电极组件38、39和40。每个辅助单元通常还包括一个检波器58,它可以是一个用于在三个正交方向中的每个方向上感应压缩的地震波信号的三分量检波器。在一些实施例中,检波器可以是一个结合压力传感器的四分量检波器。也可以使用四分量的水听器,其中4个传感器相互成54度角,而不是像通常的三分量检波器那样互成90度角。同样也可结合一个四分量检波器和一个压力传感器,组成一个五分量检波器。
每个环形安装的电极组件包括多个触点。每个触点可以作为一个电极,或者所有的触点可以一起形成一个环形电极。如果环形电极装配到金属桶内,则这些触点要与金属桶绝缘。图5显示了环形安装的电极组件38的俯视图。为了简单示意,图5中只显示了4个触点,标示为触点(电极)38a、38b、38c和38d。然而,在环形安装的电极组件中通常可以包括更大数量的电极,例如16个。可以按照不同的配置来连接电极以发挥作用。例如,如果要在井筒的轴向上或z方向的两个位置之间施加电压或探测电压,或者如果施加电流或探测电流,则要同时激励(或互连)环上的所有电极,从而将这些电极用作为环形电极。如果要在垂直于井筒轴线的x或y方向上施加或者检测电压,或者施加电流,则可以在电极38a和38c之间或者电极38b和38d之间施加或者检测这些电压或电流。中央单元32中的控制和处理单元54,以及辅助单元中的辅助控制和处理单元55将控制电极间的互联。
中央单元32通常包括控制和处理单元54。控制和处理单元54包括控制功能和通讯,和将数据传输到地面,以及实现缓冲以控制通讯的电子装置。控制和处理单元54还包括可以描述邻井的功能。除了本发明之外,该领域那些普通的技术将会得到邻井相关物理数据,如使用测井仪器的测量。所包含邻井的描述不仅仅只局限于确定邻井仪器所获取的数据是否正常、井眼轨迹是否弯曲、断层、泥浆侵入、断层倾角、方位角以及其他与井眼状况、环境修正、侵入效应和近井地层参数相关的物理参数。控制和处理单元54接收来自地面采集单元24的控制信号。控制和处理单元54依次对电磁发射器/接收器和电极使用适当的控制信号。控制和处理单元54控制在任何给定的时间由哪个电磁发射器/接收器以及哪个电极作为发射器,同时控制哪个作为接收器。控制和处理单元54还控制地震波检测器56对地震波(声波)信号的接收。在一个可选的实施例中,控制和处理单元54还可以包括一个计算机处理单元,用来完成井下仪器所选择的处理步骤。
控制和处理单元54还向各个辅助单元中的辅助控制和处理单元55发射控制信号和接收数据信号。辅助控制和处理单元55依次来向电磁发射器/接收器以及辅助单元中的电极施加适当的控制信号,以发射或者接收适当的信号。控制和处理单元55还控制检波器58对地震波信号的接收。每个辅助单元都有一个唯一的地址,所以中央单元32和辅助单元30之间的通讯通常是数字的。控制和处理单元54还可以进行特定的信号处理,包括但不限于发射器和系统响应修正、噪声过滤、数据平均和信噪比改善。
根据本发明,电磁发射器/接收器以及电极可以用来在多个不同模式下生成和检测信号。在这里所用到的术语“时间域”指的是利用激励信号进行测量,其中突然切断电流而产生瞬态信号。对于时间域激励,激励信号通常是方波,或者脉冲,或者三角波,或者伪随机二进制序列(PBRS)信号,如图6所示。“频率域”测量通常利用正弦波激励信号。“直流”测量是利用保持恒定的激励信号进行的。在进行直流测量时,最好使用缓慢变化的交流信号,以防止电极的极化,然而,交流信号的变化率要足够慢,使得在给定的采样时间内能够检测到地层的直流响应。
仪器10可以进行测量的不同模式包括但不限于下列模式
模式1时间域测量,其中信号由电磁发射器产生(3个分量x,y,z)并且由电磁接收器检测(3个分量x,y,z)。这个测量主要对于导电层的电导率敏感。
模式2时间域测量,其中信号由电偶极子产生(只有z方向),并且由电磁接收器检测(3个分量x,y,z)。这个测量值具有对地层中导电和电阻部分的混合敏感性。这个测量对于地层的电阻率敏感是因为产生的信号是由电偶极子产生的时间域(瞬态)信号。这个测量对于地层的电导率敏感是因为信号是由对与地层中的电流成正比的磁场敏感的电磁接收器检测的。
模式3时间域测量,其中信号由电偶极子产生(只有z方向),并且由电偶极子接收器检测(3个分量x,y,z)。这个测量主要对于电阻敏感的地层。
模式4时间域测量,其中信号由电磁发射器产生(3个分量x,y,z),并且由电偶极子检测(3个分量x,y,z)。这个测量提供了和模式2测量所提供的基本相同的信息,但可以作为重复和备用。测量值对于地层的电导率敏感是因为产生的信号是由电磁发射器产生的时间域(瞬态)信号。这个测量值对于地层的电阻率敏感是因为信号是由对电流产生的电压敏感的偶极子接收器检测的。
模式5直流测量,其中信号由偶极子发射器产生(只有z方向),并且由电磁接收器检测(3个分量x,y,z)。通常这个测量不会为模式6测量所获得的信息添加额外的信息。可以进行这个测量来确认测量的一致性。这个测量理论上应该只提供一个常量信号,因为直流电压不会产生磁场。常量信号中任何大的变化都应该解释为是由设备工作产生的信号、仪器故障、由于地层中的高电导率结构(如黄铁矿)而产生的信号,或者是由于井眼本身导致的信号,例如非常大的自然电位,或者和油气层中的扩散过程相关的非常大的感应极化。
模式6直流测量,其中信号由偶极子发射器产生(只有z方向),并且由偶极子检测器检测(只有z方向)。这个测量提供了偶极子到偶极子的电阻率测量,由此根据本发明生成伪截面。
在本发明的一个优选实施例中,通过模式6中的地层电阻率直流测量来生成初步的地下图像,这里称为“伪截面”。然后利用模式1、2和3中的电磁测量来完善伪截面图像。模式1主要检测地层中的导电区域。模式2检测地层中导电和电阻区域。模式3主要检测地层中电阻区域。在另一个实施例中,结合模式1、2和3的测量一起使用了模式4的测量。
模式6中进行的测量可以产生地层的初始图像。在进行模式6的测量时,通过第一偶极子把电流施加到地层上,其中,电流从第一电极(包括配置成环形电极的环形安装的电极组件中的电极)进入地层,并通过和第一环形电极隔开的第二环形电极从地层返回。通常,电流从电极环44进入地层,并通过中央单元的电极环46返回,或者电流从电极环38进入地层,并通过辅助单元的电极40返回。接着测量各个其他辅助单元中的两个电极间的电压,例如电极38,40,或者中央单元中的电极44和46。信号接着依次由所有其他的辅助单元和中央单元发射,并且信号被其他未发射信号的辅助单元和中央单元中的检测器检测到,直到信号从所有的中央和辅助单元发射出,并且对于每次发射,都被所有没有发射信号的单元里的检测器检测到。
电阻率中的方位角变化也可以通过模式6测量。但是,不是由z方向上纵向分隔开的2个环形电极形成接收器偶极子测量的,而是由第一电极(例如图4所示的电极44a)以及和第一电极纵向隔开的第二电极(例如图4所示的电极46a)形成偶极子测量的。这样的偶电极配置对井中接收电极所处的一边地下地层的电导率区域非常敏感,例如充满液体的断层。该偶电极的另一边也可以从其它围绕该井的侧向位置上配置的径向电极对构成,同时每一个电极所处的一边地下地层的电导率区域非常敏感,例如充满液体的断层。
图7、8、9A、9B和9C描述了模式6测量的使用。在进行模式6的测量时,图7显示了对于电流偶极子的电流和电势线的分布,该偶极子在图7中称为电极C1和C2,包括该井地面上的两个电极。该表面表示井眼一边地层的垂直切面。电流线(从C1通过地层到C2的曲线)表示各承载了从电极C1到电极C2的十分之一电流的管面。图7还显示了所造成的等电位场力线,其垂直于电流线。这些电位场力线延伸到井的表面,沿着井壁在分开的位置产生电压差。这个电压差可以通过电压电极测量,如图7中P1、P2所示。可以理解,通过C1和C2间任何特定路径的电流量是沿着那条路径的电阻的函数,并且在电极P1和P2的位置处,电阻率会对电极之间的电压产生最大影响的地层部分是从电极C1和C2的中心位置出来、与井壁成45度角进入地层并延伸到P1和P2的线与从电极P1和P2的中心位置出来、与井壁成45度角进入地层并延伸到C1和C2的线相交的区域。相应地,与电流电极间隔更远的电压检测电极会检测到从井表面更加深入地层的区域的电阻率。
参考图8,如上所述,施加电流到地层的电流电极可以包括仪器10的一个单元(中央或者辅助)中的两个环形电极。然后在仪器10的其他单元(中央或者辅助)上的电极对之间进行电压测量。图8中,偶极子的电极间的单位距离用“a”表示,电流电极的中心到各个电压测量电极间的距离是“na”,这里“n”表示电流电极和相应电压电极间的单位距离的数目。由一个电极上的注入电流测量和另一个电极上记录的电压所得到的电阻率值显示在电极中心之间45度投影线的交点处。选取大的n值,也就是大的间隔,可以得到更大深度的探测结果。
在本发明的另一个实施例中,源偶极子和/或检测器偶极子还可以包括中央或者辅助单元之一里的第一电极,和另一个中央或者辅助单元里的第二电极,因为间距越大,信噪比越好。
图9A显示了沿着井一部分用模式6进行的电阻测量的图形化表示。虽然图9A只是显示了井的一侧地层的一个垂直切片,但是假设井周围的地层为圆周对称,这样伪截面可以延伸到井的整个圆周。沿着井内的连续测量来得到生产伪截面数据。从获取的伪截面数据的测量中提供一个视电阻率,由此可以生成伪截面。对于电流偶极子的每个位置,会在电压偶极子的多个位置进行电压测量。对于每个电流偶极子/电压偶极子位置,在从电流偶极子发出的线与从电压偶极子发出的线交叉的地方标出测量数据点(如上所述)。接着对各个交点处的数据值画出等高线,如图9A所示的等高线,以得到地下的近似图像。
根据现场数据选择一个地质模型,利用已知的传统技术反演和成像处理解释如图9A的现场数据。图9C显示了一个复杂地质模型的示例。使用同一配置的仪器计算出的地质模型的响应值被用来对井进行测量,然后地质模型的计算响应值与实际的测量值进行比较。改变地质模型,直到地质模型计算响应和现场数据之间达到了良好的匹配。图9B显示了对图9C的地质模型的计算响应,对其采用了二维数值算法来计算这个响应。
然后利用模式1、2和3的电磁测量来得到井眼周围地下的电导率和电阻率估计值。在模式1测量中,第一辅助单元(或者中央单元)的电磁发射器的各个正交线圈相继通电,由此产生的信号被其它的各个辅助和中央单元里的电磁接收器的三个正交线圈探测到,这样对于每个电磁发射器,由各个电磁接收器进行了9次测量。在模式2中,电偶极子对产生信号,其中电极位于中央单元或者一个辅助单元中,所产生的信号被电磁接收器的三个正交线圈检测到,这样对于每次信号发射,进行了3次测量。在模式3中,由电偶极子产生信号,其中偶极子的电极位于中央单元或者一个辅助单元中,所产生的信号被配置为在三个正交方向上检测信号的电偶极子接收器检测到,这样对每次信号发射,进行3次测量。在每一个模式1、2、和3中,沿着井身方向上定位的每个仪器,沿着井内仪器从各个相继的辅助(或者中央)单元发出信号,对于各个相继的发射,由所有没有用来发射信号的辅助(中央)单元中的接收器检测到电阻率信号。在本发明的一个特别的实施例中,和模式1、模式2和模式3测量一起进行并使用了模式4测量。
电磁线圈发射器产生电磁场,当流过线圈发射器的电流突然切断时,会在井眼附近的地层中感应出电流。这些电流会产生二次电磁场,其可以被电磁接收器检测到,该接收器包括磁场接收器或线圈以及电场接收器或电偶极子。检测到的二次磁场的强度主要和目标地层的电导率成正比。电磁场产生二次电场和磁场,其可以被偶极子接收器以及电磁接收器检测到。检测到的电场的强度主要和目标地层的电阻率成正比。检测到的磁场的强度主要和目标地层的电导率成正比。与简单水平层的偏差,例如地层中的结构和大的电阻率对比,会提高接收器的混合敏感性。对于一个给定的发射器,沿着井身方向上的不同距离间隔的接收器对井眼地面以下不同间隔的电阻率和/或电阻率是敏感的。通常,测量对于距离井壁5到50米远处的地层部分的电导率和/或电阻率敏感。对电导率和电阻率测量已定地层的方法是常规技术所知的。
利用常规技术计算模型来解释模式2和3的测量值,以确定传感器检测到的电阻率和电导率。对各自响应的地层电阻率值的变化通过Normalized Jacobian的计算评估测量的灵敏度和它们各自响应的模型。然后按照时间对这些结果进行标绘,最大的灵敏度表示更灵敏的信号。
当泥浆电阻率太高使得电场传感器不能接触地层时,可以取电磁场接收器检测到的磁场信号的梯度来得到时间域电场信号。在本发明另一个实施例中,可以利用磁场梯度仪或者环形天线(toroidal antenna)代替电极来测量电阻率。例如,请见Karinski,A.,和Mousatov,A.,2001,Vertical Resistivity Estimation With Toroidal Antennas inTransversely Isotropic Media,SPWLA Transaction,paper BB。
利用电导率和电阻率的时间域电磁测量来细化由地层电阻率的直流测量得到的伪图像。如上所述,在本发明的一些实施例中,频率域电磁测量和时间域电磁测量相结合而使用。在利用直流测量得到初步的地层伪截面图像,并且利用电导率和电阻率的时间域电磁测量(或许还有频率域电磁测量)来细化伪截面图像之后,利用所测量的声波速度对图像进行约束。地面震源25产生的地震信号,由井中的中央单元探测器52和在辅助单元探测器58监测到。在本发明的另一个实施例中,地震信号是由井中的震源仪器发生的。
在本发明的另一个实施例中,除了时间域测量,还在地下进行频率域电磁测量。如上所述,通常通过使用正弦波作为信号源来进行频率域测量。虽然频率域测量通常对于井眼周围的更远区域的地层参数很不敏感,但是和时间域数据一起在图像处理中引入频率域数据可以改善地层图像的质量。
根据本发明,由直流电阻率测量得到地下的初步图像。这使得在钻井时就可以生成图像,而不需要在几天甚至几个星期之后在数据处理中心进行冗长的反演处理。对直流数据进行快速反演,然后再用电磁成像进行反演。利用地震波速度数据来约束电阻率/电导率数据;即,在地下地震波速度大致为常数的区域中,把电阻率/电导率也限制为常数。
虽然以上根据通过电缆12将仪器10放到井中的实施例对本发明进行了描述,但在本发明的另一些实施例中,可以通过传统的钻杆或油管或者绕管放入井中。对于定向井,水平井或者由于井内状况对仪器下方有阻碍,可以使用钻杆或油管传输系统。
在另一个实施例中,本发明被当作传感器用来对储层进行永久性监测。这个实施例与使用井下仪器一样,只是传感器永久性地保留在井下固定的位置上。
图10显示了本发明的一个优选实施例的流程图。在步骤72,生成由直流信号测量的地层电阻率的图形表示。在步骤74,基于现场数据测量值选择地质模型。在步骤76,针对井下测量时使用的仪器配置,生成对所选地质模型的计算响应。在步骤78,将所选地质模型的计算响应与测量数据进行比较。在步骤80,根据这个比较结果对地质模型进行修正。在步骤82,将电磁数据和直流电阻率数据进行组合,以细化由直流电阻率数据生成的图像。在步骤84,利用地震波数据来约束由直流电阻率数据和电磁数据的组合生成的图像。了解哪些本领域的常规技术,如果有先前的地质数据或者其他相关的先前数据,那么可以利用这些先前数据来进一步优化该井下成像。
在设计该仪器时,把测量的数据与储层的电阻率和电导率数据联系起来。可以预期在仪器刻度,以及已有储层的参数被用来建立测量和储层之间的关系。这个刻度系数也随着测井和成像的进程不断地更新。
本发明不仅包括预测钻井过程中不规则的钻头前沿的电导率,还包括定向井和水平井的预测。
径向灵敏度信息对钻井修正也很有用。为测量径向灵敏度,把电流注入到地层中。电流沿着井内(套管、钻液、泥浆等)流动并且一些电流泄漏到地层中。如果沿着井眼在两个连续位置检测电流,则测量值之间的差值就可以归为泄漏到地层中的电流。通过测量电压来测量电流,两个连续位置间电压测量值的差值可以归为泄漏到地层中的电流。这个差值称为第二差值。对于进行这些第二差值的测量,在中央单元中包含三个环形安装的电极组件(44、45和46)并在辅助单元中包含三个环形安装的电极组件(38、39和40)是特别有用的。
可以认识到,在不脱离后附的权利要求所限定的本发明范围的情况下,可以对本发明进行各种修改和变化。所有这些修改和变化都涵盖在权利要求所限定的范围中。
权利要求
1.一种对井眼所钻入的地层进行成像的方法,包括使用通过直流信号检测的地层电阻率生成地层的初始模型;计算用于进行直流电阻率测量的仪器对所述初始模型的响应;将所计算的响应与电阻率测量结果进行比较;修正所述模型并且重复所述的计算和比较,直到计算响应与测量结果之间的差值达到最小值;基于使用电磁测量仪器进行的电阻率测量对修正后的模型进行细化;以及使用声波速度测量对细化后的模型进行约束。
2.根据权利要求1所述的方法,其中电磁电阻率测量包括时间域电磁测量。
3.根据权利要求1所述的方法,其中电磁电阻率测量包括频率域电磁测量。
4.根据权利要求1所述的方法,其中声波速度测量包括地震波传播时间测量。
全文摘要
在本发明的一个实施例中包括系统(10),用于生成钻入地层的井眼(14)周围的地层图像。利用直流测量(44、45、46、38、39、40)测量地层的电阻率,利用时间域信号或交流测量(48、50、33、35)测量地层的电导率和电阻率。还测量地层的声波速度(52、58)。把直流电阻率测量、由时间域电磁信号进行的电导率测量、由时间域电磁信号进行的电阻率测量以及声波速度测量结合起来(82、84),从而生成地层的图像。
文档编号G01V3/20GK1749781SQ20051010901
公开日2006年3月22日 申请日期2002年8月21日 优先权日2001年8月23日
发明者库尔特·马丁·斯泰克 申请人:Kjt企业公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1