全极化综合孔径微波辐射计的制作方法

文档序号:6129186阅读:168来源:国知局

专利名称::全极化综合孔径微波辐射计的制作方法
技术领域
:本发明属于微波遥感
技术领域
,具体地说,本发明涉及用于极化测量的微波辐射计。
背景技术
:自20世纪80年代后期,以ESTAR的试飞成功为标志,一直用于射电天文领域的被动微波孔径综合技术成功应用于对地观测领域。特别是对于较低频率的对地微波遥感系统来说,实孔径微波辐射计对天线的设计、加工、运载和在轨扫描都提出苛刻的要求。与之相反,综合孔径微波辐射计采用稀疏阵列和相关处理,同时获得视场内所有像素的辐射亮温,不需要天线的机械扫描。由于采用一定数目的小天线单元代替了大的天线单元,而小天线单元阵列在发射过程中可以折叠,从而也避免了大天线研制和运载的技术难题。ESTAR是一种一维综合孔径微波辐射计,采用波导缝隙天线作为单元天线,交轨方向为宽波束,通过孔径综合技术提高空间分辨率;顺轨方向为窄波束,通过平台本身的运动实现推扫成像。但是ESTAR是一种单一极化微波辐射计,这是由于波导缝隙天线本身的局限性所造成(可参考C.S.Ruf,C.T.Swift,A.B.Tanner,andD.M.LeVine,"InterferometricsyntheticaperturemicrowaveradiometryfortheremotesensingoftheEarth,"IEEETrans.Geosci.RemoteSensing,vol.26,pp.597611,Sept.1988.和D.M.LeVine,C.T.Swift,andM.Haken,"Developmentofthesyntheticaperturemicrowaveradiometer,ESTAR,"IEEETrans.Geosci.RemoteSensing,vol.39,pp.199202,Jan.2001.)。自1994年起,欧洲空间局开始进行二维综合孔径的研究。釆用孔径综合技术的成像微波辐射计(MIRAS)作为土壤湿度与海洋盐度使命的唯一载荷,成为欧空局地球4果测计划中第二个^皮批准的项目。MIRAS采用了Y形阵列布局来保证以最少的天线单元获得最大的空间分辨率。在MIRAS中革命性地引入了极化测量模式,从而具备了更强大的能力,对海洋和陆地的微波辐射特征进行研究。MIRAS中由于采用了圆形微带天线,因此极化信息的分离并不是很大的困难。但是由于二维综合孔径微波辐射计单元数众多,给系统的设计,调试,定标和图^象的反演都带来极大的困难(可参考M.Martin-NeiraandJ.M.Goutoule,"MIRAS-Atwo—dimensionalaperture—synthesisradiometerforsoilmoistureandoceansalinityobservations",ESABulletin,No.92,pp.95-104,Nov.1997.)。
发明内容本发明的目的是克服现有技术的不足,将极化单元天线和波束赋形技术与传统一维综合孔径辐射计相结合,采用定标波束及工作波束的双波束设计,从而提供一种具有电扫描极化测量能力、图像反演模型简单且系统复杂度低的一维综合孔径微波辐射计。为实现上述发明目的,本发明提供的全极化综合孔径微波辐射计包括依次连接的天线阵列、接收机阵列、相关器单元、控制和数据处理单元,所述控制和数据处理单元与计算机或数据接口连接;其特征在于,所述天线阵列是一维天线阵列,该天线阵列由平行排列的双^L化天线单元组成。双极化天线的两个极化方向分别对应;和&输出,其中&是垂直极化输出,^是水平极化输出。上述技术方案中,所述一维极化天线单元的天线面与地球球心共面;所述一维极化天线单元的工作波束呈圓锥面,该圆锥面的轴线经过地球球心。上述技术方案中,所述一维极化天线具有接收宇宙背景辐射的定标波束,所述定标波束为扇形波束或圓锥面波束。上述^t术方案中,所述全才及化综合孔径;微波辐射计可以工作于单一极化模式,双极化模式或全极化模式。上述技术方案中,所述接收机为双通道接收机。当每个单元天线都采用双通道接收机时,本发明的微波辐射计为全极化输出,能够同时测量4个Stokes参数。上述技术方案中,所述接收机为单通道接收机,并通过极化切换序列,实现单极化、双极化或全极化测量。上述技术方案中,天线单元采用波导缝隙天线或者微带天线。本发明具有如下技术效果1.实现了一维综合孔径的全极化测量;2.实现了综合孔径辐射计等入射角测量;3.实现了综合孔径微波辐射计的两点定标;4.本发明的一维孔径综合的技术复杂度低于二维孔径综合;5.单通道接收才;*化切换模式满足了轻量化和低功耗的要求;6.双通道接收机模式实现了高灵敏度辐射测量。图1为一维全才及化综合孔径微波辐射计示意图。图2为双波束单元天线简化原理图,图中所示为4个《敛带单元形成的单元天线,左侧定标波束由各微带单元同相相加,形成传统扇形波束,波束恒定指向冷空,为系统定标才是供平坦目标,右侧工作波束由各^f敖带单元加权后相加,因此波束偏离天线阵列法线,形成圆锥面波束。图3为天线阵列、基线构成及极化切换序列;图中横轴为天线单元位置,图中数字为基线构成,垂直粗线为天线极化切换序列,图中共有三种不同的切换序列,分别为VVHH、VHVH、HVVH,其中V和H分别表示垂直和水平极化。图4为一维全极化综合孔径辐射计与MIRAS的組合应用。图5为一维全极化综合孔径微波辐射计系统框图。具体实施例方式本发明建立在ESTAR和MIRAS的基础之上,通过采用一维极化单元天线,使得一维综合孔径微波辐射计也具有了极化测量的能力。同时,由于采用了波束赋形技术,保证了所有分辨单元的入射角相同,极大的降低了图像反演的难度。革命性的双波束设计使得综合孔径微波辐射计也具有了两点定标能力,从而保证了系统测量的精度。相对于传统的一维单极化综合孔径辐射计,本发明引入全极化测量和波束赋形技术;相对于以MIRAS为代表的二维综合孔径辐射计,本发明采用了较少的天线单元,极大的緩解了对整个系统进行研制和调试的困难,降低了系统的复杂程度。下面结合附图和具体实施例对本发明作进一步地描述。实施例1本实施例的一维全极化综合孔径微波辐射计依次连接的天线阵列、接收机阵列、相关器单元、控制和数据处理单元,所述控制和数据处理单元与计算机或数据接口连接;其特征在于,所述天线阵列的天线单元均为一维极化天线单元,如图1所示,天线阵列1的一维极化天线单元的天线面与地球球心共面,即天线面垂直于天底点4地球表面并指向地球中心(即天线面垂直于地球表面在天底点4处的切平面)。这里一维极化天线单元是指在一维综合孔径辐射计中采用的极化天线单元。其实现形式可以是波导缝隙天线或者微带天线,由一系列缝隙或单元贴片形成一个天线单元。本发明采用的极化天线单元均为双极化天线,其两个极化方向分别对应^和&输出,其中^是垂直极化输出,^是水平极化输出。对天线主波束(即工作波束2)进行赋形设计,使得实际天线波束不再是传统的扇面,而是圆锥面,且圆锥面的轴线(即天线面与天底点4之间的连线)延长线经过地肆J求心,这样就保证了地球表面上,波束内每一个像素的入射角a相同。由于极化辐射测量对入射角a的变化极为敏感,这种相同入射角的设计极大的筒化了极化定标的困难。本发明的工作波束地面足迹3为圆弧,图1中2,3构成天线波束前端,21,31构成天线波束尾端。本实施例的所有一维极化天线单元均具有定标波束5和工作波束2,如图2所示,从而实现了综合孔径微波辐射计的两点定标。图2中所示为4个^:带单元形成的单元天线,左侧定标波束由各微带单元同相相加或加4又后相加,形成传统扇形波束,该扇形波束恒定指向冷空,为系统定标提供平坦目标;右侧工作波束由各微带单元加权后相加,使得波束偏离天线阵列法线,形成圆锥面波束。这里的冷空是指宇宙背景,其辐射亮温为2.7K,通常用^L全功率微波辐射计的定标。扇形波束指向冷空的意思是说,波束需要避开地^4口太阳。微波辐射测量的关键是确定目标的辐射亮温,但是由于辐射计本身的温度漂移,精确的亮温测量只能够通过定标实现。当接收才A^r波器线性很好时,知道两个点,就可以利用线性关系推算出地球表面的亮温。本实施例中这两个点选择冷空和匹配负载,其辐射亮温分别是2.7K和290K(等于接收机实际物理温度)。本发明中的工作波束和定标波束均是指用于接收信号的波束。本实施例的全极化综合孔径微波辐射计可以工作于单一极化模式,双极化模式或全极化模式。本实施例中可采用波导缝隙天线,天线单元为杆状,天线阵列为离散的杆状天线阵(如图3所示);也可釆用微带天线,此时天线单元本身是一维线性微带阵列,整个天线阵为二维微带阵列。本实施例中采用双通道接收机,当每个单元天线都采用双通道接收机时,该系统同时测量4个Stokes参数,因此为全极化输出,也就是说单一极化模式和双极化模式不需要对仪器进行设置,只需从全极化测量结果中取出相应的数据即可。Stokes参数可表示为Is=2Re<>其中^为垂直极化电场,^为水平极化电场;《和^分别为垂直极化电场和水平极化电场的共扼;o表征时间平均;Re表示取其实部,Im表示取其虛部。在本实施例的双通道接收机方案中,两个接收机分别输出^和^信号。因此按照Stokes参数的表达式,双通道接收机可以同时测量4个Stokes参数。Stokes参数完整反映了地物的微波辐射特征,通过对Stokes参数的测量,能够获得很多有用信息,比如海面的风速和风向等。单极化测量是获得第一个或第二个参数;双极化测量是同时获得前两个参数;全极化测量是同时获得4个参数。ESTAR采用单极化测量,获得第一个参数;MIRAS是全极化测量,获得全部4个参数;本发明的一维全极化综合孔径-徵波辐射计(英文名称为FPIR)也是获得全部4个参数。本实施例中,相关器单元用于对天线接收信号进行相关处理,对天线输出信号进行复相乘及积分处理(时间平均),从而获得Stokes参数。本实施例中,控制和数据处理单元对整个系统的工作状态和工作时序进行控制,将获得的Stokes参数进行打包、緩存后,发送到计算机或数据接口。本实施例中,计算机或数据接口对接收到的数据进行处理,图像反演;或转发给卫星平台进行数据下传。实施例2本实施例的一维全极化综合孔径微波辐射计包括依次连接的天线阵列、接收机阵列、相关器单元、控制和数据处理单元,所述控制和数据处理单元与计算机或数据接口连接;其特征在于,所述天线阵列的天线单元均为一维极化天线单元。本实施例中的极化天线单元为双极化天线。本实施例中的一维极化天线,天线面与地球球心共面,即天线面垂直于天底点地球表面。天线主波束进行赋形设计,因此实际天线波束不再是传统的扇面,而是圆锥面,圆锥面的轴线延长线经过地球球心,这样就保证了地球表面上,波束内每一个像素的入射角相同。由于极化辐射测量对入射角的变化极为敏感,这种相同入射角的设计极大的简化了极化定标的困难。本实施例中的接收机阵列釆用单通道接收机。本实施例适用于系统的体积、重量和功耗等受限,无法容纳双通道接收机的情况。采用单通道接收机,附以特殊的开关切换序列,可实现单极化、双极化或全极化测量。本实施例中单通道接收机通过切换序列,利用同一个接收机顺序输出£K或&极化信号,因此单通道接收机只能一个一个的测量Stokes参数。在釆用单通道接收机时,其开关切换序列的设计原则是保证在一个序列周期内,不同天线单元所组成的基线,均匀采集两个单极化信号VV、HH以及交叉极化信号VH和HV。由于VH-HV,因此这里均匀釆集是指各极化信号采集时间Tvv-Thh=Tvh+Thv。其中,Tv、Thh、Tvh、Thv分别是系统对单极化信号VV、HH以及交叉极化信号VH和HV的采集时间(即积分时间)。本实施例中,一维综合孔径微波辐射计的阵列配置、基线构成及极化切换顺序的一个具体的方案如图3所示,阵列布局为ll单元阵列,满足极化切换要求下的最小冗余设计,其基线满足了从0间距到38间距的均匀覆盖,其阵列配置能够满足极化切换要求。但是图3仅仅描述了该发明的一个实施例,权利要求不限于11基线也不限于38间距。在采用单通道接收机方案进行双极化和全极化测量时,需要采用极化切换序列,积分时间被分享。因此当采用单通道接收机方案进行双极化和全极化测量时,辐射灵敏度相应变差。本发明提供的一维综合孔径微波辐射计是一种微波遥感器,可以搭载于任何波束无遮挡的平台,比如机载或星载。比如与MIRAS的组合应用。图4示出了本发明的一个应用实例,该实例为本发明的装置搭载于MIRAS平台,为MIRAS提供海面风场信息(如提供海面粗糙度的辅助信息)。如图4所示,本发明的天线阵列1安装于MIRAS平台8的一侧,MIRAS平台8具有3条MIRAS臂9,其顶部为带有太阳能帆板7的卫星平台6,该卫星平台6为载荷提供电力以及姿态控制功能。MIMS的地面足迹10与本发明工作波束的地面足迹3等宽。本发明的地面足迹具有等入射角《的特点。工作在X波段(10.7GHz)的一维全极化综合孔径微波辐射计,可以用于海面风场(风速和风向)和陆地植被的测量,风场和植^皮信息对MIRAS海水盐度和土壤湿度的反演具有至关重要的作用。一个本发明的参数为X波段的风场测量辐射计系统性能如表1所示,仪器参数如表2所示。表1<table>tableseeoriginaldocumentpage9</column></row><table>表2<table>tableseeoriginaldocumentpage10</column></row><table>权利要求1、一种全极化综合孔径微波辐射计,包括依次连接的天线阵列、接收机阵列、相关器单元以及控制和数据处理单元,所述控制和数据处理单元能与计算机或数据接口连接,其特征在于,所述天线阵列是一维天线阵列,所述天线阵列由平行排列的双极化天线单元组成。2、按权利要求1所述的全极化综合孔径微波辐射计,其特征在于,所述双极化天线单元的天线面与地球球心共面,所述双极化天线单元的工作波束呈圆锥面,所述圓锥面的轴线经过地球球心。3、按权利要求1所述的全极化综合孔径^b皮辐射计,其特征在于,所述双极化天线单元具有接收宇宙背景辐射的定标波束,所述定标波束为扇形波束或圆锥面波束。4、按权利要求l、2或3所述的全极化综合孔径微波辐射计,其特征在于,所述接收机阵列中的接收机为双通道接收才几。5、按权利要求l、2或3所述的全极化综合孔径微波辐射计,其特征在于,所述接收机阵列中的接收机为单通道接收机,釆用极化切换序列的方法实现单极化、双极化或全极化测量。6、按权利要求l、2或3所述的全极化综合孔径微波辐射计,其特征在于,所述双极化天线单元采用波导缝隙天线或者微带天线。全文摘要本发明涉及一种全极化综合孔径微波辐射计,包括依次连接的天线阵列、接收机阵列、相关器单元、控制和数据处理单元,所述控制和数据处理单元与计算机或数据接口连接;其特征在于,所述天线阵列是一维天线阵列,该天线阵列由平行排列的双极化天线单元组成。本发明具有如下技术效果实现了一维综合孔径的全极化测量;实现了综合孔径辐射计等入射角测量;实现了综合孔径微波辐射计的两点定标;本发明的一维孔径综合的技术复杂度低于二维孔径综合;本发明的单通道接收机极化切换模式满足了轻量化和低功耗的要求;本发明的双通道接收机模式实现了高灵敏度辐射测量。文档编号G01S13/00GK101349719SQ20071011934公开日2009年1月21日申请日期2007年7月20日优先权日2007年7月20日发明者季吴,阎敬业,马纽埃尔·马丁·尼拉申请人:中国科学院空间科学与应用研究中心
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1