海洋地震勘查系统和方法

文档序号:6143246阅读:208来源:国知局
专利名称:海洋地震勘查系统和方法
技术领域
本发明 一般涉及地球物理勘探领域,尤其涉及海洋地震勘查领域。
背景技术
在石油和天然气产业,地球物理勘探通常被用于辅助探索并评估地 层。由地球物理勘探^^术带来的地表下结构的知识对于寻找并提取有价 值的矿产资源(特别是诸如石油和天然气的烃沉积物)是有用对。地震
勘查是一种众所周知的地球物理勘探技术。在陆上的(land-based)地 震勘查中,地震信号产生于地球表面或者表面附近,然后向下传播到地 球下表面中。在海洋地震勘查中,地震信号也可以经过位于地球下表面 之上的水域向下传播。地震能量源(seismic energy source)用于生成地 震信号,该地震信号传播到地球中后,至少部分地被地表下地震反射体 所反射。这种地震反射体通常为地层之间的分界面,这些地层具有不同 弹性特性,尤其是波速和岩石密度,其导致在分界面处的弹性阻抗不同。 在地表处或地表附近、在水的叠加体(overlyingbody)中、或者在钻孔 的已知深度处的地震传感器检测反射。记录并处理得到的地震数据以得 到关于地质結构和地层特性的信息以及它们潜在的烃含量。
合适的能量源包括陆地上的炸药(explosive)或者振荡器(vibrator) 以及水中的空气枪或者海洋振荡器。合适的地震传感器类型可包括陆地 勘查中的粒子速率传感器(particle velocity sensor)和海洋勘查中的水压传感器。本领域公知的粒子速率传感器是地震检波器(geophone),水 压传感器是水下地震检波器(hydrophone)。地震源和地震传感器两者 都可以通过其自身部署,或者,更通常地,部署为阵列。
在典型的海洋地震勘查中,地震勘查船典型地以大约5节的速度在 水面航行,并载有地震获取装置,例如导航控制、地震源控制、地震控 制设备和记录设备。地震源控制设备使得由地震船在水体中牵引的地震 源在选择的时间启动。地震拖缆(seismic streamer),也称作地震缆索, 是延长的类似缆索的结构,其由牵引地震源的地震勘查船或者另一地震 勘查船牵引。通常,地震船后牵引多个地震拖缆。地震拖缆包含传感器 以检测源于地震源并从反射分界面反射的波场(wave field)。通常,地 震拖缆包含诸如水下地震检波器的压力传感器,但是已经有提议使地震 拖缆除水下地震检波器之外还包含水粒子运动传感器(water particle motion sensor),例如地震检波器。压力传感器和粒子速率传感器可以 邻近地配置,沿着地震缆索成对地或者成阵列对地并置。
压力和粒子运动传感器检测从地层之间的分界面反射后在水中向 上传播的波。这些波;波称为初波(primary wave),其包含地层结构的 迫切需要的(sought after)信息》传感器也检测从水表处的水和空气的 分界面反射后在水中向下传播的波。这些波形通常称为二次波或者"虛 反射(ghost),,。
压力和粒子运动波形两者都在空气和水的分界面处发生极性逆转。 因此,泛向(omni - directional)并因此不辨别方向的压力传感器检测 到虚反射波中的相位极性的逆转(reversal of phase polarity)。然而,定 向的垂直粒子运动传感器不检测相位逆转,这是因为上行波场和下行波 场因方向的改变而具有相反的极性,并且由于水与空气分界面的反射而 抵消了极性改变。压力传感器和粒子运动传感器在虚反射的传感器检测 方面的极性差异可以被用来基本上抵消虛反射。因此,压力和粒子运动 传感器信号的适当的组合可被用于去虛反射海洋地震数据。
然而,诸如地震检波器和加速计的粒子运动传感器相比例如水下地 震检波器的压力传感器,更容易收集到来自牵引的拖缆中的机械震动的 不需要的噪声。这样,由于粒子运动传感器中的额外噪声,粒子运动和 压力传感器的信号的简单组合将导致低信噪比。典型地,这种机械性质 的拖缆噪声在低于50Hz的低频率中更明显。
已经提出了对噪声问题的各种解决方案。例如,Albert Berni在他的 美国专利号为NO. 4,437,175、题为"Marine Seismic System" 、 1984年 3月13日授予的美国专利中,描述了在海洋地震拖缆中包括水下地震检波器和集成加速计的系统。该专利提出,在与来自水下地震检波器的压 力信号结合用于进一步处理之前,滤波来自集成加速计的粒子速率信号 以衰减丰i低的频率。然而,没有任何使用粒子运动传感器和压力传感器 两者的拖缆缆索的商业实现方案。
因此,需要一种用于海洋地震勘查的包括粒子运动传感器(例如, 地震检波器)的系统,其不易受低频噪声的影响。这种传感器将有益于 在海洋地震拖缆中结合例如水下地震检波器的压力传感器而部署以衰 减拖缆的机械噪声,从而提高信噪比。

发明内容
在一实施例中,该发明为用于海洋地震勘查的系统,包括至少一 个海洋地震拖缆;安装在所迷至少一个海洋地震拖缆中的至少一个压力 传感器;安装在所述至少一个海洋地震拖缆中并与所述至少一个压力传 感器并置的至少一个粒子运动传感器,其中所述至少一个粒子运动传感 器具有20赫兹以上的谐振频率;以及组合来自所述至少一个压力传感 器的压力数据和来自所述至少一个粒子运动传感器的粒子运动数据以 用于进一步数据处理的计算机装置。
在又一实施例中,该发明为用于海洋地震勘查的方法,包括牵引 至少一个海洋地震拖缆;从安装在所述至少一个海洋地震拖缆中的至少 一个压力传感器获取压力数据;从安装在所述至少一个海洋地震拖缆并 与所述至少一个压力传感器并置的粒子运动传感器获取粒子运动数据, 其中所述至少一个粒子运动传感器具有20赫兹以上的谐振频率;以及 组合所述压力数据和所述粒子运动数据用于进一步数据处理。


通过参考以下详细说明书以及附图,可以更容易理解该发明及其优点。
图1是根据本发明的地震检波器的频率响应图; 图2是标准的地震检波器的频率响应图3是根据本发明的一个加速计和三个地震检波器的频率响应图; 以及 '
图4是本发明的用于海洋地震勘查的方法的实施例的示意步骤的流 程图。
尽管该发明将以较佳实施例中描述,可以理解,该发明并不限于这 些实施例。相反地,该发明旨在覆盖可能落入由所附权利要求所定义的本发明范围的的各种替换、^"改和等同方案。
具体实施例方式
在一实施例中,本发明为用于海洋地震勘查的系统。根据本发明的 系统包括牵引的海洋地震拖缆,其中压力传感器和粒子运动传感器并置 于拖缆中。较优地,压力传感器为水下地震检波器,粒子运动传感器为
地震检波器。粒子运动传感器被设计为具有20Hz以上的谐振频率。
本发明的系统可以分别采用压力传感器和粒子运动传感器记录压 力数据和粒子运动数据。然后,通过地震数据处理领域公知的常规计算 机装置,组合该压力数据和粒子运动数据。这种计算机装置可以包括但 不仅限于计算机处理单元的任何合适的组合或者网络,该计算机处理单 元包括但不仅限于硬件(任何类型的处理器、暂时的或者永久的存储器、 和其它合适的计算机处理设备)、软件(操作系统、应用程序、数学程 序库和其它任何相适用的软件)、连接件(电学的、光学的、无线的或 者其它的)和外围设备(输入输出设备,例如键盘、定点设备和扫描仪; 显示设备,例如监视器和打印机;存储介质,例如磁盘和硬盘驱动器; 和其它任何相适用的设备)。
地震检波器通常地为包括至少两个交互单元(线圈和磁铁)的电磁 设备。线圏和磁铁都置于地震检波器外壳(geophone casing)里,其转 而连接到介质,地震信号通过介质传播。两个单元中的一个刚性地贴附 于外壳,其或者是线圏或者是磁铁;而另一个单元柔性地悬挂于外壳。 固定的单元随地震检波器外壳移动,而悬挂的单元充当惯性质量。因此, 随着媒介响应于通过其传送的地震信号而移动,固定的单元随震检波器 外壳和媒介整体移动。在外壳响应于正穿过的地震波而上下移动时,悬 挂的单元趋向于保持静止。
线圏和磁铁之间的相对轴向的移动将在线團中诱发电流,这是由于 线圈绕组切割了来自磁铁的磁通线。产生于电线圈中的电流与穿过线圏 的磁通量的变化速率成比例并形成地震检波器输出信号,其电压与固定 的单元的移动速率成比例。通常,磁铁随着地震检波器外壳移动,而线 圏充当惯性质量。典型地,线圈为螺线管线圏、电线的环状绕组,磁铁 一般是永久磁铁。线圈通过弹性系统悬挂于地震检波器外壳。
悬挂单元和弹性系统的组合具有谐振或者固有频率,该频率取决于 惯性质量和弹簧悬挂的回复力。在标准的电磁地震检波器中,谐振频率 /,取决于悬挂的惯性单元的质量m (不管是线圈或者磁铁)和弹簧的刚 性系数A:,如下所示 7<formula>formula see original document page 8</formula>(1)
该弹性常数A是作用于弹簧的力和该力导致的弹簧伸縮量之间的比 例常数。可以设计悬挂的单元和弹性装置的组合,使得弹性常数A和惯 性质量m给出预先取定的谐振频率/,。通常,已被使用的是具有大约 10Hz的谐振频率,的地震检波器。在本发明的系统中,应用谐振频率, 大于20Hz的地震检波器。因此,选择本发明的地震检波器的弹簧参数 A和所悬挂的惯性质量m使得该组合产生大于20 Hz的谐振频率A 。
另外,通常引入悬挂单元的阻尼以补偿(equalize)在大于谐振频 率的频率范围内的地震检波器的响应。可以下列方式获得阻尼,通过例 如采用阻尼电阻器作为跨接在电线團两端的分流器,或者通过将悬挂系 统浸入粘性液体中,将阻尼包含其中作为悬桂系统的一部分。阻尼通常 由阻尼系数表示,其代表下式给出的临界阻尼&的几分之一(fraction):
<formula>formula see original document page 8</formula> (2)
其表示刚好消除地震检波器的振荡响应的最大阻尼值。通常采用范围大 约在0.5至0.7的阻尼系数。在以下所有例子中,使用0.6的阻尼系数。
当来自地震信号传动的频率大于地震检波器的谐振频率时,外壳相 对于惯性质量的位移等于传动(即地震信号)的位移并可以用作对传动 的直接测量。小于谐振频率时,地震检波器的灵敏性落在约-12dB每 倍频程的等级。因此,在本发明的系统中,所使用的地震检波器在谐振 频率以下时(特别是在l-10Hz的范围内),相比于更高的频率,具有 对信号和噪声的更低的响应。更低的频率仅为来自机械的拖缆震动的噪 声所存在的地方。这样,本发明所应用的地震检波器相比于应用于地震 勘探的常规地震检波器,将检测和记录更少的这种机械噪声。
图1示意可以应用于本发明系统的地震检波器的频率响应。图l将 根据本发明的地震检波器的频率响应11显示为以dB为单位的灵敏度相 对于以Hz为单位的频率的曲线图。该实例中的特殊的地震检波器具有 如本发明具体说明的40Hz的谐振频率,其大于20Hz。然而,其它谐振 频率的地震检波器也可以用于本发明的系统,其在随后参考图3讨论。
作为对比,考虑谐振频率为10Hz的标准地震检波器的响应。图2
以Hz为单位的频率的曲线图。对于该标准地震检波器,例如可能在1 OHz (数字22指示)处的频率响应(数字21指示)存在噪声,其比来自50 - 100Hz (数字23指示)处的噪声高60dB。在噪声频率的若干倍频率处,也可以预期有谐波失真。由于该谐波失真,数字化输出信号的动态 范围和所关注信号的质量将受到限制。
如图l所示,与标准的地震检波器相比,根据本发明的地震检波器
的频率响应11在l-10Hz范围内(数字12指示)降低了 20-68犯,这 将对可用的动态范围和谐波失真有有益的影响。对于本发明的地震检波 器,在低频(数字12指示)端部的频率响应11的斜率通常为大约12犯 每倍频程。
如上所述,通过恰当地选择弹性常数/t和悬桂的惯性质量w,将地 震检波器设计为使得该组合生成大于20Hz的谐波频率。在特殊的实施 例中,谐振频率选择在30- 50Hz的频率范围。图3示出了根据本发明 的三个地震检波器的频率响应,典型的谐振频率为30、 40和50Hz。由 数字32、 33、 34指示的频率响应图形分别对应30、 40、 50Hz的谐振频 率。谐振频率为40Hz(数字33指示)的地震检波器与图1中所示相同。
在具有谐振频率为10Hz的地震检波器中,所检测到的低频噪声将 具有比检测的地震信号大得多的振幅。如果检测信号加上10Hz地震检 波器的噪声的全动态范围被数字化,模数转换器(典型地为24位分辨 率)将会被低频噪声覆盖,那么实际的地震信号与地震信号中不出现噪 声的情况相比具有较低的分辨率(并且精度较差)。谐振频率为20Hz 或者更高的地震检波器的又一个优点是具有更线性的输出,这是由于其 不产生低频噪声的谐波。例如,10Hz的噪声在20Hz、 30Hz和40Hz处 将产生大的二次、三次和四次谐波。基于这些原因,釆用更高谐振频率 的地震检波器将非常有利,其在地震信号被数字化之前起着衰减低频中 的强噪声的模拟滤波器作用。
海洋地震拖缆中的地震检波器检测到频率范围低于20Hz的任何信 号可以被认为主要是噪声,并且基于此原因,在地震检波器信号如这里 将要进一步描述的与水下地震检波器信号结合之前,地震检波器信号通 常被滤波以消除低于约20Hz的频率。在与水下地震检波器信号结合以 去虚反射之前,地震检波器的相位和频率响应通常将与水下地震检波器 4言号匹配。
在一实施例中,在用于组合记录在海洋地震拖缆中的压力传感器和 粒子运动传感器的信号的方法中采用本发明的粒子运动传感器,该方法 在Svein Vaage等人于2005年9月8号^^布的题为"System for Combining Signals of Pressure Sensors and Particle Motion Sensors in Marine Seismic Streamers"的美国专利公开号2005/0195686 Al中描述,以上美国专利 与本发明有共同发明人,转让给本发明受让人的分公司,并通过引用并入此文。在该实施例中,所记录的压力传感器信号具有包括较低频率范 围和较髙频率范围的带宽,本发明的粒子运动传感器所记录的信号具有 包括至少较高频率范围的带宽。根据记录的压力传感器信号计算在较低 频率范围内的粒子运动传感器信号,从而生成在较低频率范围的模拟的 粒子运动传感器信号。模拟的粒子运动传感器信号在较低频率范围与较 高频率范围中的所记录的粒子运动传感器信号合并,以生成基本上与记 录的压力传感器信号具有相同带宽的合并的粒子运动传感器信号。将记 录的压力传感器信号和合成的粒子运动传感器信号組合以进一步处理。 本发明中也可以用加速计替代地震检波器作为粒子运动传感器。图
3将根据本发明的加速计的频率响应31示出为以dB为单位的灵敏度相 对于以Hz为单位的频率的曲线图。如果在50Hz处期望有与地震检波器 相同的灵敏度,则在低频处的衰减将如图3所示。当以速率为单位图示 时,加速计的频率响应31的斜率显示在j氐频处的6bB每倍频程的衰减。 这意味着,对于在1 - 10Hz频率范围的频率,获得了 15-34dB的衰减。 因此,使用加速计也可以是衰减在低频处的粒子运动传感器中的噪声的 问题的解决方案,但是,加速计将不能如地震检波器一样衰减噪声。
在又一实施例中,本发明的粒子运动传感器将以一种方式安装在海 洋地震拖缆中,该方式在Rune Tenghamn和Andre Stenzel等人于2005 年9月8日乂>布的题为"Particle Motion Sensor for Marine Seismic Sensor Streamers"的美国专利申请公开号2005/0194201 AI中描述,上述专利 申请被转让给本发明的受让人的分公司并通过引用合并与此。在该实施 例中,海洋地震传感器系统包括适于由地震船在水体中牵引的传感器护 套。根据本发明的多个粒子运动传感器在传感器护套中沿着护套在以定 距离间隔的位置处悬挂。每个粒子运动传感器由至少一个偏置设备 (biasing device)悬挂在护套中。选择每个粒子运动传感器的质量和每 个偏置设备的作用力比(force rate),使得传感器护套中每个传感器的 悬挂的谐振频率落在选择的频率范围中。该引文中,由于对粒子传感器 采用悬挂设置手段而使拖缆的机械噪声的减少补偿(complement)并增 加了由于采用本发明的粒子运动传感器而使噪声的减少。
本发明的粒子运动传感器的有益响应在所记录的粒子运动数据中 并因此在组合的压力和粒子运动数据中提供了更高的信噪比。这种改进 的信号分辨率将有益于任何进一步的数据处理,在该数据处理中应用了 组合的压力和粒子运动数据。例如,压力数据和粒子运动数据可以被组 合以生成分离的上行和下行波场(wavefield)分量,然后可以进一步以 地震数据处理领域熟知的方式对这些分量进行处理。例如,上行波场分量可以被用于提供去虚反射(deghost)的地震数据,并用于衰减在所记 录的地震数据中的其它不需要的波场分量。
在再一实施例中,本发明为用于海洋地震勘查的方法。图4示出示 意本发明海洋地震勘查方法实施例的步骤流程图。
在步骤41,在海洋环境中牵引至少一个海洋地震拖缆。典型地,在 海洋地震勘查期间将牵引多个海洋地震拖缆。
在步骤42,从安装在至少一个海洋地震拖缆(其在步骤41中被牵 引)中的至少一个压力传感器获取压力数据。典型地,在海洋地震勘查 期间,多个压力传感器将被安装在多个海洋地震拖缆中。压力传感器可 以单个地或成组安装。压力传感器典型地将包括水下地震检波器。
在步骤43,从安装在至少一个海洋地震拖缆(在步骤41中被牵引) 中并且在步骤42中与至少一个压力传感器并置的至少一个粒子运动传 感器获取粒子运动数据。根据本发明设计该粒子运动传感器,从而使其 具有20Hz以上的谐振频率。典型地,在海洋地震勘查期间,多个粒子 运动传感器将安装在多个海洋地震拖缆中并与多个压力传感器并置。粒 子运动传感器可以单独地或成组安装。粒子运动传感器典型地将包括地 震检波器。具体地,选择地震检波器的弹性常数和悬挂惯性质量,使得 该组合产生20Hz以上的谐振频率。在一替代实施例中,粒子运动传感 器可以包括加速计。
在步骤44中,组合步骤42所获取的压力数据和步骤43所获取的 粒子运动数椐以用于进一步处理,其方式如在地震数据处理领域中被人 熟知的方式。例如,可以组合压力和粒子运动数据,以产生去虚反射的 海洋地震数据。组合压力数据和粒子运动数据以产生去虛反射的海洋地 震数据的技术在海洋地震数据处理领域中为人公知。
应当理解,之前所述仅为该发明的特定实施例的详细描述,在不脱 离本发明范围的情况下,可以本披露作出对于所揭示实施例的许多改 变、修改和替代。因此,之前所述的描述并不示意为对本发明范围的限 制。进一步,该发明的范围仅取决于所附权利要求及其等同特征范围。
权利要求
1、一种用于海洋地震勘查的系统,包括至少一个海洋地震拖缆;至少一个压力传感器,安装在所述至少一个海洋地震拖缆中;至少一个粒子运动传感器,安装在所述至少一个海洋地震拖缆中并与所述至少一个压力传感器并置,其中所述至少一个粒子运动传感器具有20赫兹以上的谐振频率;以及计算机装置,用于组合来自所述至少一个压力传感器的压力数据和来自所述至少一个粒子运动传感器的粒子运动数据以用于进一步处理。
2、 如权利要求1所示的系统,其中所述至少一个压力传感器包括 水下地震检波器。
3、 如权利要求1所示的系统,其中所述至少一个粒子运动传感器 包括地震检波器。
4、 如权利要求1所示的系统,其中所述至少一个粒子运动传感器 包括加速计。
5、 如权利要求3所示的系统,其中选择所述地震检波器的弹性常 数和悬挂惯性质量的组合以生成大于20赫兹的谐振频率。
6、 如权利要求5所示的系统,其中所述谐振频率的范围为大约30 赫兹到大约50赫兹。
7、 如权利要求l所示的系统,还包括计算机装置,用于根据所述记录的压力传感器信号计算在较低频率 范围内的粒子运动传感器信号,从而生成较低频率范围内的模拟粒子运 动传感器信号;以及计算机装置,用于将在较低频率范围内的所述模拟粒子运动传感器 信号与大于较低频率范围的所述记录的压力传感器信号合并,以生成合 并的粒子运动传感器信号,其具有与所述记录的压力传感器信号的带宽 基本上相同的带宽。
8、 如权利要求1所示的系统,其中所述用于组合压力数据和粒子 运动数据的计算机装置包括用于生成上行和下行波场分量的计算机装 置。
9、 一种用于海洋地震勘查的方法,包括 牵引至少一个海洋地震拖缆;从安装在所述至少一个海洋地震拖缆中的至少一个压力传感器获取压力数据;从安装在至少一个所述海洋地震拖缆中并与至少一个所述压力传 感器并置的至少一个粒子运动传感器获取粒子运动数据,其中所述至少一个粒子运动传感器具有20赫兹以上的谐振频率;以及组合所述压力数据和所述粒子运动数据以用于进一步处理。
10、如权利要求9所述的方法,其中所述至少一个压力传感器包括水下地震检波器。
11、如权利要求9所述的方法,其中所述至少一个粒子运动传感器包括地震检波器。
12、 如权利要求9所述的方法,其中所述至少一个粒子运动传感器 包4舌力。速计。
13、 如权利要求11所述的方法,其中选择所述地震检波器的弹性 常数和悬挂惯性质量的组合以生成大于20赫兹的谐振频率。
14、 如权利要求13所述的方法,其中所述谐振频率的范围为大约 30赫兹到大约50赫兹。
15、 如权利要求9所述的方法,进一步包括根据所述记录的压力传感器信号计算在较低频率范围内的粒子运 动传感器信号,从而生成较低频率范围内的模拟粒子运动传感器信号; 以及将在较低频率范围内的所述模拟粒子运动传感器信号与大于较低 频率范围的所述记录的压力传感器信号合并,以生成合并的粒子运动传 感器信号,其具有与所述记录的压力传感器信号的带宽基本上相同的带宽。
16、 如权利要求9所述的方法,其中组合所述压力数据和所述粒子 运动数据包括生成上行和下行波场分量。
全文摘要
该发明为海洋地震勘查的系统,包括至少一个海洋地震拖缆;嵌于至少一个所述海洋地震拖缆中的至少一个压力传感器;嵌于至少一个所述海洋地震拖缆中并搭配至少一个所述压力传感器的至少一个粒子运动传感器,其中至少一个所述粒子运动传感器具有20赫兹以上的谐振频率;以及用于为进一步数据处理、而组合来自至少一个压力传感器中的压力数据和来自至少一个粒子运动传感器中的粒子运动数据的电脑设备。
文档编号G01V1/20GK101680959SQ200880011615
公开日2010年3月24日 申请日期2008年4月10日 优先权日2007年4月11日
发明者C·N·博雷森, S·R·L·滕汉恩 申请人:Pgs地球物理公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1