具有经由互感感应耦合到squid的线圈的squid的制作方法

文档序号:5866506阅读:202来源:国知局
专利名称:具有经由互感感应耦合到squid的线圈的squid的制作方法
技术领域
本发明涉及一种具有连接的线圈的直流超导量子干涉器(dc-SQUID),所述线圈经由互感感应耦合到SQUID。
背景技术
所述超导量子干涉器(SQUID)是极其灵敏的传感器,其可以用来检测磁通量或任何可以被转换成磁通量的物理量。偏置到直流电源的“dc-SQUID”由超导环路组成,所述超导环路被两个(相同的)约瑟夫森(Jowphson)结中断。可以在读出电子器件的帮助下检测SQUID的输出信号。最主要的设计难点在于,要放大非常小的输出信号而不引入来自前置放大器的噪声贡献。图1描述的是偏置dc-SQUID的两种方式,电流偏置(current bias)和电压偏置 (voltage bias)。在电流偏置模式(图Ia所示)下,由理想电流源产生的恒定的电流穿过 SQUID,随着外部磁通量的变化,加在SQUID两端的电压周期性地改变(如图2所示)。类似地,如果由理想电压源产生的恒定的电压应用在SQUID上(图Ib所示),随着外部磁通量的变化,穿过SQUID的电流也周期性地调整(如图2所示)。这里,在这两种偏置模式下, SQUID分别作为通量到电压或通量到电流的转换器。V-Φ (Ι-Φ)特性的周期是磁通量子Otl =2. 07 X ICT15Wb。一般地,前置放大器噪声贡献远远高于固有的SQUID噪声贡献。所述前置放大器引入两种额外的噪声源电流噪声源和电压噪声源。通常,前置放大器的电流噪声贡献远远低于其电压噪声贡献。典型的电压噪声值是InV/ V Hz0在电流偏置和电压偏置的模式中, 前置放大器的噪声贡献通常都高于固有的SQUID噪声。因此,最佳的SQUID读出设计需要读出SQUID信号而不加入前置放大器噪声。目前,有很多种方法来抑制前置放大器噪声。1、变压器和通量调制R. L. Forgacs 等人’ “Digital-analog magnetometer utilizing superconducting sensor",Rev. Sci. Instrum. 38,214-220 (1967),首先使用升压变压器、 调制通量和锁定检测器,因此可通过同步地检测在调制频率上的SQUID电压来感测外部通量。2、二阶段配置另一个可行的技术是使用第二 SQUID作为低噪声前置放大器。有很多放大器 SQUID 可以选择可以运行在模拟模式(M. Gershenson,“ Design of a hysteretic SQUID as the readout for a dc-SQUID “,IEEE Trans. Magn. 27,2910-2912(1991) 禾口 Μ· Podt 等人, “ Two-stage amplifier based on a double relaxation oscillation superconducting quantum interference device" , Appl.Phys. Lett. 75, 2316-2318(1999))或数字模式(D. Drung 等人,“Measured performance parameters of gradiometers with digital output" ,IEEE trans. Magn. 25,1034-1037 (1989))的具有裸(磁滞)结点的SQUID,以及通过通量调制读出的(F. C. Wellstood等人,“Low-frequency noise in dc superconducting quantum interference devices below IK " , App1. Phys. Lett. 50,772-774(1987)),或者直接读出的(V. Foglietti,“ Double dc-SQUID for flux—locked—loop operation " , Appl.Phys. Lett 59,476-478(1991) and Maslennikov 等人,"A double dc-SQUID based magnetometer" , IEEE Trans. Appl. Supercond. 5, 3241-3243 (1995)),或者具有串联的 SQUID 阵列的(R. P. Welty 等人,“Two-stage integrated SQUID amplifer with series array output " , IEEE Trans.Appl. Supercond. 3,2605-2608 (1993))具有电阻分流结点的 SQUID。3、串联 SQUID 阵列在 R. P. Welty 等人,“A series array of dc—SQUIDs" ,IEEE Trans. Magn. 27, 2924-2926(1991)的著作中,很多相同的SQUID串联在一起以将单一检测SQUID的小的输出信号加起来。4、松弛震荡 SQUID所谓松弛震荡SQUID (ROS)通过使用与磁滞结串联的dc-SQUID也能够获得高转换系数,所述磁滞结通过电阻和电感分流(F. L.Vernon等人,‘‘Relaxation oscillations in Jos 印 hson junctions 〃,J. Appl. Phys. 39,2661-2664 (1968))。如果两个磁滞结串联连接且通过电阻和电感分流,则获得双松弛震荡SQUID (DROS)。D. J. Ade 1 erhof等人’ “(Double)relaxation oscillation SQUIDs with high flux-to-voltage transfer simulations and experiments " , J. Appl. Phys. 76,3875-3886(1994)) ildj^Sftff^i 下,阶梯状V-Φ特性会导致极高的转换系数。以上提及的技术有点庞大或者说有点复杂,例如,在二阶段配置中,需要具有通量调制配置的变压器或一个以上的SQUID。大的串联SQUID阵列承受着输入线圈的寄生共振, 它们的V-Φ特性可能会因个别SQUID偏置的变化而失真。所述ROS和DROS的每个独立的单元分别需要四个或五个以上的电线,以将冷区域和室温的电子器件连接,从而不可避免的导致大量的热损耗。以下两种方法被认为是本发明最接近的
背景技术
_ 附力口正反馈(The Additional Positive Feedback, APF),由 D.Drung 等人, “Low-noise high-speed dc superconducting quantum interference device magnetometer with simplified feedback electronics " , Appl. Phys. Lett.57, 406-408(1990)公开,包括包含串联的电阻和线圈的附加的电路,所述电路并联的连接到 SQUID(如图3a所示),且在电流偏置模式下运行。所述线圈经由互感感应耦合到SQUID。 所述附加电路引起正反馈,使得SQUID的转换系数在一个斜率上急剧的增大。如果将工作点设定在V-Φ特性的最陡斜率上,就获得了最大转换系数5Γ/5Φ,从而等效前置放大器通量噪声减小。APF包括以下缺点首先,由于APF电阻作为在低频率时额外的分流,峰值到峰值的电压摆幅减小。进一步地,对于系统摆率来说,具有APF的V-F特性的线性范围减小是不利的,这导致更难应用偏置反转。最终,APF电阻的引入会影响总的噪声贡献(D.Drimg, Supercond. Sci. Technol. 16,1320-1336 (2003))。噪声消除(NC)包括FET和线圈,并在电压偏置模式运行在电压偏置模式使用特别相似的电路,M. Kiviranta 等人,“DC-SQUID electronics based on the noise cancellation scheme " , IEEE Trans. Appl. Supercond. 5, 2146-2148 (1995),教示了,通过用冷却的电压控制的GaAs FET (图3b所示)置换APF电阻,这种附加的电路可以消除前置放大器的电压噪声,这也称为噪声消除方法(NC)。NC 为了抑制放大器噪声贡献,需要满足的NC条件是:Rfet =Μ·δ¥/δΦ。因此,对于要容忍制造参数(水浴温度波动,rf干扰等)的变化的系统来说,相适应的增益控制是必要的。寻找方法来消除由临界电流漂移、反馈电阻漂移、增益控制电路引起的通量变化等引起的额外的磁通噪声也是非常重要的。另一方面,冷却的有源设备(FET)也增加了噪声水平,所以低噪声SQUID需要具有低沟道电阻的FET。但是具有高输入电容和低沟道电阻的 FET很难寻找,因为大多数GaAs FETS是为高频率应用准备的(H. Seppa等人,IEEE Trans. Magn. 27,2488-2490(1991))。

发明内容
因此本发明的目的是提供一种具有线圈的改进的SQUID,所述线圈经由互感感应耦合到SQUID。这个目的是通过具有权利要求1的特征的具有线圈的SQUID来实现的,所述线圈经由互感感应耦合到SQUID。优选的实施例是从属权利要求的主题。SQUID自举电路(SBC)由相互耦合的dc_SQUID和反馈线圈组成。所述SQUID和所述线圈是串联连接,它们通过互感感应耦合。所述反馈线圈,可以由超导体或常规金属制成,也可以集成到SQUID芯片上,或邻近SQUID分开布置。SQUID和线圈一起形成新型双端子器件,这被称为SBC。本发明组合了 APF和NC的优势,避免了他们的缺点。所谓的新型双端子器件SBC由互相耦合的dc-SQUID和反馈线圈组成。在这种新设计的帮助下,SQUID的电流-Φ或电压-Φ特性将是非对称的,且等效动态电阻将改变。 SBC可以被认为是一种新型电路元件。在本发明中,所述新型的双端子器件SBC可以使得 Ι-Φ周期特性非对称,同时改变SQUID的动态电阻。在读出电子器件的帮助下,SQUID的输出信号可以被检测/放大。主要的设计难点在于,要放大非常小的输出信号而不能引入来自于前置放大器的噪声贡献。如果给电压偏置SBC的输入电路提供两个不同的等效动态电阻,就可能增加(a / 3Φ)5『并同时抑制前置放大器噪声,从而可以获得高SNR改善。这将在图8进一步解释。在一个实施例中,所述线圈包括超导体材料作为导体,特别是包括相同材料制成的电线,以减少热噪声和涡流噪声。所述线圈可以包括常规金属材料(例如铜)作为导体, 特别是如果合适的话包括由相同材料制成的电线,从而有利于减小成本。


本发明和其实施例将通过以下说明和附图作进一步解释,这有利于更好的理解本发明的目的、特征、功能和优点。其中图1 SQUID读出原理。(图la)电流偏置,(图lb)电压偏置;图2 图1的SQUID得到的V (I) _Φ特性;图3 (图3a) APF和(图3b) NC的等效电路。
图4a和4b 在两种偏置模式下的SBC等效电路;图5a:由于互感5造成的SBC的I(V)-Φ曲线的非对称;图5b 在条件下测量的电压偏置模式下的SBC的Ι-Φ曲线;图6 在V-Φ曲线两个不同的侧面,在电流偏置模式下没有和有互感5时测量的 I-V曲线;图7 在Ι-Φ曲线两个不同的侧面,在电压偏置模式下没有和有互感5时测量的 I-V曲线;图8 具有两个不同等效动态电阻的电压偏置SBC的输入电路;图9a和9b 分别针对前置放大器噪声和外部通量信号的图8的等效电路。
具体实施例方式SBC的等效电路如图4所示dc-SQUID 2通过理想电流源(图4a)或电压源(图 4b)l偏置。在电流偏置模式中,通过串联连接的SQUID 2和反馈线圈4的电流3是恒定的, 但是加在SQUID 2两端上的电压随着外部磁场的变化而调整。在电压偏置模式中,通过恒定的电压来偏置SQUID 2,且通过外部磁场来调制电流3。反馈线圈4经由互感5感应耦合到SQUID 2,使得在SQUID环路中出现附加的通量。SQUID 2和反馈线圈4的排列顺序可以交换。新的元件SBC具有以下特别的特性在电流偏置和电压偏置模式下,电压(电流)_通量曲线(如图5a所示)和电流-电压的曲线变得非对称。以电压偏置模式为例,SQUID-环路Φ·Ρ中的通量包括两部分,外部磁通量Δ Φε和由电流变化和互感M的乘积产生的附加反馈通量Δ Oa,然后Ι-Φ 特性变得非对称。当斜率&+/3Φ为正时,环路中的总通量由外部和附加的通量的差改变, Δ Φ 00Ρ = Δ Φε-Δ Φ3θ在斜率为负的情况下,总通量的改变通过和给出,Δ Φ 00Ρ = Δ Φε+Δ Φ3θ当L的极性改变时,这些关系可以相反,Δ i ·M的乘积确定了 Ι-Φ特性的不对称性,SBC的电流到通量转换系数表示如下(0//0Φ)5ΒΟ = (9//3Φ)/(1-Μ·5 /5Φ),其中是没有L的裸(原始)SQUID的电流到通量转换系数,以及M2 = k2 (Ls · L)k是SQUID和线圈之间的耦合系数;L是反馈线圈的感应系数,Ls是SQUID的感应系数。如果传感器设计为M.的值为0和1之间,SBCWI(V)-O曲线是非对称的, 同时获得了具有创造性的优势。Μ.&+/3Φ优选的值在0. 5和1之间,更优选在0. 84和0. 96 之间获得。由于在恒定偏置电压下经由M耦合的反馈通量,的动态电阻也是改变的。动态电阻表示V-I曲线的斜率或(在这个实施例中)在SQUID的工作点的I-V 曲线的反相斜率。工作点W1或W2决定了动态电阻的值。SBC的动态电阻可以表示为
其中Rd是不串联L的裸SQUID的动态电阻。图5b显示的是在
条件下测量的电压偏置模式的SBC的Ι-Φ曲线。当SBC的工作点选在Ι-Φ特性的平缓的一侧(图5b中的W1)时,S/抑是负的,大于Rd。类似地,如果工作点设在陡峭的一侧,减小。图6a是在电流偏置(Ib)模式时,当磁通量从ηΦ。转变到(η+1/2) Φ。时,dc_SQUID 在没有线圈4的情况下的电流_电压特性。当正的区间被放大(见图6b),对于恒定的偏置电流,很明显看到SQUID最大电压的变化范围是大约20 μ V。在这种情况下Rd是7. 5 Ω。 但是,在SBC中,电压的变化范围在陡斜率侧(见图5b)显著地增加到50 μ V(见图5c),导致54Ω的i fe。对比而言,i fe在图5b的缓斜率侧减小到只有1. 4Ω。对比图6b和图6c,可以发现在引入串联电感L之后,最大电压动态范围或变化范围Δ U,即信号的峰值到峰值振幅大约从20 μ V提高到50 μ V。在电压偏置模式,在没有或有互感5的情况下,电流的变化范围几乎不变。图7a 是当在电压偏置(Ub)模式下磁通量从IiOc^Ij (n+1/2) Otl变化时,dc_SQUID在没有线圈4 时的电流-电压特性。从放大的区间来看(图7b),得到19 Ω的原始Rd。当工作点选在图 5b的电流-通量特性的缓斜率侧时,SBC的也增加到40 Ω (图7c)。但是类似于电流偏置模式,凡在另一侧减小到只有1. 6 Ω。当连接读出电子器件时,例如0Ρ,可以检测并放大SQUID的输出信号。主要的设计难点在于放大非常小的输出信号而不引入来自前置放大器的噪声贡献。这可以通过具有两种不同等效动态电阻的电压偏置SBC获得,将在图8解释。包括Ladd和Radd的一个路径是用来减小前置放大器噪声的,而另一个路径L是用来增加和因此增加外部通量信号的。所述读出电路包括作为前置放大器的普通的0P,所述OP通过电阻Rg和可变电压偏置源来配置用作电流-电压转换器。根据公式(0//acj))SBC= (3//οΦ)/(1-Μ'3ι/£ Φ)和 RciS8C=Rd(1"M-ai/acD),SBC 的
&/3Φ与凡成反比。结果,当SBC连接到具有电压噪声VnW读出电子器件的前置放大器时,应用到SQUID环路的针对外部信号通量Δ Φ6的信号增益(a/S(D)ajc正比于前置放大器的噪声贡献,而信噪比SNR=/A=,桑'( )sbc]/(Vo/ RdSBe)保持恒定。为了改善 SNR,提出了一种新的读出方案,称为“具有两种不同的等效电阻的电压偏置SBC”。其读出电子器件如图8所示。如上文所述,(AV^D)ajc显著的增加,而同时前置放大器噪声贡献可以被抑制。因此,SNR相比于裸SQUID有了很大的改进。所述读出电子器件可以被分别认为是针对前置放大器噪声Vn(图9a)和外部通量信号图9b)的两个不同的等效电路。对于前置放大器噪声源Vn,等效电路类似于图 3b中的NC。穿过电感Ladd的噪声电流经由互感Madd在SQUID环路中产生通量。所述通量导致加在SQUID两端的电压Vs。如果条件Radd=IVIacld-5V/5a)满足,Vs等于噪声\’使得噪声电流不流经SQUID。因此,噪声电流保持为Vn/Radd, 相比于裸SQUID,噪声电流被抑制了 Radd/Rd(Radd彡Rd)。然而,对于通量信号ΔΦε,上文已经描述了等效电路(见图4b或图%)。在这种情况下,增加,使得SNR进一步改

口 ο在图8中,线圈L连接到SQUID 2的第一侧;所提供的附加的反馈路径Radd,Ladd包括串联的附加的反馈线圈Ladd和附加的电阻Radd,所述路径连接到SQUID的第二侧,从而附加的线圈Ladd经由附加的互感Madd感应地连接到SQUID。因此,SQUID 2、线圈L,Ladd和电阻 Radd形成双端子器件,其第一端子T1电性连接到线圈L和反馈路径Ladd,Radd的不与SQUID连接的侧,而第二端子T2连接到SQUID的第二侧。这种具有端子T1,T2的配置连接或可以连接到读出电路,特别是前置放大器,更特别是0Ρ,优选地配置为作为电流_电压转换器来操作,这可以被认为是一种新型的双端子器件。应注意到所述线圈L相比于附加的线圈Ladd具有相反的极性。因此,可以这样设计并安排第二反馈路径使得前置放大器噪声可以被第二反馈路径减小。 设计并安排第二反馈路径Ladd,Radd和SQUID使得SQUID和附加的反馈线圈Ladd之间的互感Madd遵守以下公式Radd= MadcT
权利要求
1.一种用于检测磁通量的传感器,包括直流超导量子干涉器(dc SQUID) (2)和反馈线圈(4),所述反馈线圈(4)电性连接到所述SQUID(2)的第一侧且经由互感(5,M)感应耦合到所述SQUID,其特征在于,所述SQUID(2)和所述线圈(4,L)串联。
2.根据权利要求1所述的传感器,其特征在于,安排并设计所述反馈线圈(4,L)作为反馈线圈工作。
3.根据权利要求1或2所述的传感器,其特征在于所述线圈包括超导体材料作为导体, 特别是包括相同材料制成的导线。
4.根据前述权利要求任一项所述的传感器,其特征在于,所述线圈包括常规金属材料作为导体,例如铜,特别是包括相同材料制成的导线。
5.根据前述权利要求任一项所述的传感器,其特征在于,所述传感器包括集成芯片 (IC),所述集成芯片(IC)包括所述SQUID和所述线圈。
6.根据前述权利要求任一项所述的传感器,其特征在于,所述传感器包括集成芯片,所述集成芯片包括所述SQUID,从而所述线圈邻近所述SQUID分开地布置。
7.根据前述权利要求任一项所述的传感器,其特征在于,扁平的螺旋线圈或弹簧线圈形成所述线圈(4,L)并被安排在所述SQUID上。
8.根据前述权利要求任一项所述的传感器,其特征在于,在所述线圈和所述SQUID之间提供有绝缘中间层。
9.根据前述权利要求任一项所述的传感器,其特征在于,所述SQUID(2)和所述线圈 (4)形成双端子器件,其中第一端子(T1)电性连接到所述SQUID的第一侧,所述线圈的一侧电性连接到所述SQUID的第二侧,且所述线圈的另一侧电性连接到所述第二端子(T2)。
10.根据前述权利要求任一项所述的传感器,其特征在于,设计并安排所述反馈线圈 (4)和所述SQUID(2)使得传感器的Ι-Φ特性是非对称的。
11.根据前述权利要求任一项所述的传感器,其特征在于,设计并安排所述反馈线圈 (4,L)和所述SQUID (2),使得所述互感(5,M)遵守以下公式(dl/d0)SBc = (9 /δΦ) {1'Μ·8 )ΘΦ) = X,其中.(Pi^O)SBC是根据前述权利要求任一项的含所述线圈(4,L)的SQUID⑵的电流到通量的转换系数;.是不含所述线圈(4,L)的裸SQUID的电流到通量的转换系数;-M2 = k2(Ls L),其中-k是所述SQUID和所述线圈之间的耦合系数;-L是所述反馈线圈的感应系数,以及-Ls是所述SQUID的感应系数,-其中X为O和1之间,1,优选地为0. 5和1之间,更优选地为0. 84和0. 96之间。
12.根据前述权利要求任一项所述的传感器,其特征在于,所述线圈(L)连接到所述 SQUID⑵的第一侧;以及提供附加的反馈路径(Radd,Ladd),所述反馈路径包括串联的附加反馈线圈(Ladd)和附加电阻(Radd),且连接到所述SQUID的第二侧,其中附加的线圈(Ladd)经由附加互感(Madd)感应耦合到所述SQUID。
13.根据前述权利要求任一项所述的传感器,其特征在于,所述SQUID(2),所述线圈 (L,Ladd)和所述电阻(Radd)形成双端子器件,其中第一端子(T1)电性连接到所述线圈(L) 和串联的所述反馈路径(Ladd,Radd)的不与所述SQUID连接的侧,第二端子(T2)连接到所述 SQUID的第二侧。
14.根据前述权利要求任一项所述的传感器,其特征在于,所述线圈(L)与所述附加线圈(Ladd)相比具有相反的极性。
15.根据前述权利要求任一项所述的传感器,其特征在于,设计并安排所述第二反馈路径使得所述第二反馈路径能减小前置放大器噪声。
16.根据前述权利要求任一项所述的传感器,其特征在于,所述传感器进一步包括或通过其端子(T1, T2)连接到读出电路,特别是前置放大器,更特别是0P,优选配置为作为电流到电压转换器操作。
17.根据前述权利要求任一项所述的传感器,其特征在于,设计并安排所述第二反馈路径(Ladd,Radd)和所述SQUID,使得所述SQUID和所述附加的反馈线圈(Ladd)之间的互感(Madd) 遵守以下公式.df_是SQUID的通量到电压的转换系数,以及-Madd2 = kadd2 (Ls Ladd),其中-kadd是SQUID和所述附加线圈(Ladd)之间的耦合系数; -Ladd是所述附加反馈线圈(Ladd)的感应系数,以及 -Ls是所述SQUID的感应系数。
18.根据前述权利要求任一项所述的传感器,其特征在于,所述双端子器件设计在集成芯片(IC)上。
全文摘要
本发明涉及一种SQUID自举电路(SBC),其包括互相耦合的dc-SQUID和反馈线圈。SQUID和线圈串联连接。反馈线圈可以由超导体或常规金属制成,也可以集成在SQUID芯片上,或邻近SQUID分开地布置。SQUID和线圈一起形成新型的称为SBC的双端子器件。本发明集合了APF和NC的优势,避免了其缺陷。有了这种新设计,SQUID的电流-Ф或电压-Ф特性将是非对称性的,且等效动态电阻也将改变。
文档编号G01R33/035GK102483444SQ200980161327
公开日2012年5月30日 申请日期2009年9月9日 优先权日2009年9月9日
发明者A·奥芬豪瑟, H-J·克劳斯, N·沃尔特斯, 张懿, 王会武, 王永良, 董慧, 谢晓明 申请人:中国科学院上海微系统与信息技术研究所, 于利希研究中心有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1