基于应变监测的识别受损索和支座角位移的健康监测方法

文档序号:6133743阅读:171来源:国知局
专利名称:基于应变监测的识别受损索和支座角位移的健康监测方法
技术领域
斜拉桥、悬索桥、桁架结构等结构有一个共同点,就是它们有许多承受拉伸载荷的部件,如斜拉索、主缆、吊索、拉杆等等,该类结构的共同点是以索、缆或仅承受拉伸载荷的杆件为支承部件,为方便起见本发明将该类结构表述为“索结构”。在索结构的服役过程中, 索结构的支承系统(指所有承载索、及所有起支承作用的仅承受拉伸载荷的杆件,为方便起见,本专利将该类结构的全部支承部件统一称为“索系统”,但实际上索系统不仅仅指支承索,也包括仅承受拉伸载荷的杆件)会受损,同时索结构的支座也可能出现角位移(例如支座绕坐标轴x、Y、z的转动,实际上就是支座绕坐标轴Χ、Υ、Ζ的角位移),这些变化对索结构的安全是一种威胁,本发明基于结构健康监测技术,基于应变监测来识别支座角位移和索结构的索系统中的受损索,属工程结构健康监测领域。
背景技术
支座角位移对索结构安全是一项重大威胁,同样的,索系统通常是索结构的关键组成部分,它的失效常常带来整个结构的失效,基于结构健康监测技术来识别支座角位移和索结构的索系统中的受损索是一种极具潜力的方法。当支座出现角位移时、或索系统的健康状态发生变化时、或者两种情况同时发生时,会引起结构的可测量参数的变化,例如会引起索力的变化,会影响索结构的变形或应变,会影响索结构的形状或空间坐标,会引起过索结构的每一点的任意假想直线的角度坐标的变化(例如结构表面任意一点的切平面中的任意一根过该点的直线的角度坐标的变化,或者结构表面任意一点的法线的角度坐标的变化),所有的这些变化都包含了索系统的健康状态信息,实际上这些可测量参数的变化包含了索系统的健康状态信息、包含了支座角位移信息,也就是说可以利用结构的可测量参数来识别支座角位移和受损索。为了能对索结构的索系统的健康状态和支座角位移有可靠的监测和判断,必须有一个能够合理有效的建立索结构的可测量参数的变化同支座角位移和索系统中所有索的健康状况间的关系的方法,基于该方法建立的健康监测系统可以给出更可信的支座角位移评估和索系统的健康评估。

发明内容
技术问题本发明公开了一种基于应变监测的、能够合理有效地识别支座角位移和受损索的健康监测方法。技术方案设索的数量和支座角位移分量的数量之和为见为叙述方便起见,本发明统一称被评估的索和支座角位移为“被评估对象”,给被评估对象连续编号,本发明用用变量i表示这一编号,i=l, 2,3,…,N,因此可以说有#个被评估对象。本发明由三大部分组成。分别是建立被评估对象健康监测系统所需的知识库和参量的方法、基于知识库(含参量)和实测索结构的应变(或变形)的被评估对象健康状态评估方法、健康监测系统的软件和硬件部分。
本发明的第一部分建立用于被评估对象健康监测的知识库和参量的方法。具体如下
1.建立索结构的力学计算基准模型A。(例如有限元基准模型)的方法如下。建立A。时,根据索结构完工之时的索结构的实测数据(包括索结构形状数据、索力数据、拉杆拉力数据、索结构支座坐标数据、索结构支座角坐标数据、索结构模态数据等实测数据,对斜拉桥、悬索桥而言是桥的桥型数据、索力数据、桥的模态数据、索的无损检测数据等能够表达索的健康状态的数据)和设计图、竣工图,利用力学方法(例如有限元法)建立 A。;如果没有索结构完工之时的结构的实测数据,那么就在建立健康监测系统前对结构进行实测,得到索结构的实测数据(包括索结构形状数据、索力数据、拉杆拉力数据、索结构支座坐标数据、索结构支座角坐标数据、索结构模态数据等实测数据,对斜拉桥、悬索桥而言是桥的桥型数据、索力数据、桥的模态数据、索的无损检测数据等能够表达索的健康状态的数据),根据此数据和索结构的设计图、竣工图,利用力学方法(例如有限元法)建立A。。不论用何种方法获得A。,基于A。计算得到的索结构计算数据(对斜拉桥、悬索桥而言是桥的桥型数据、索力数据、桥的模态数据)必须非常接近其实测数据,误差一般不得大于5%。这样可保证利用A。计算所得的模拟情况下的应变计算数据、索力计算数据、索结构形状计算数据和位移计算数据、索结构角度数据等,可靠地接近所模拟情况真实发生时的实测数据。“结构的全部被监测的应变数据”可由结构上f个指定点的、及每个指定点的Z个指定方向的应变来描述,结构应变数据的变化就是K个指定点的所有应变的变化。每次共有I 个应变测量值或计算值来表征结构应变信息。#和I一般不得小于#。为方便起见,在本发明中将“结构的被监测的应变数据”简称为“被监测量”。在后面提到“被监测量的某某矩阵或某某向量”时,也可读成“应变的某某矩阵或某某向量”。本发明中用被监测量初始向量G表示索结构的所有被监测量的初始值组成的向量(见式(1))。要求在获得A。的同时获得C;。因在前述条件下,基于索结构的计算基准模型计算所得的被监测量可靠地接近于初始被监测量的实测数据,在后面的叙述中,将用同一符号来表示该计算值和实测值。
权利要求
1.一种基于应变监测的识别受损索和支座角位移的健康监测方法,其特征在于所述方法包括a.为叙述方便起见,统一称被评估的支承索和支座角位移分量为被评估对象,设被评估的支承索的数量和支座角位移分量的数量之和为见即被评估对象的数量为# ;确定被评估对象的编号规则,按此规则将索结构中所有的被评估对象编号,该编号在后续步骤中将用于生成向量和矩阵;用变量i表示这一编号,i=l, 2,3,…,N-,b.确定指定的被监测点,被监测点即表征结构应变信息的所有指定点,并给所有指定点编号;确定被监测点的被监测的应变方向,并给所有指定的被监测应变编号;“被监测应变编号”在后续步骤中将用于生成向量和矩阵;“结构的全部被监测的应变数据”由上述所有被监测应变组成;将“结构的被监测的应变数据”简称为“被监测量”;所有被监测量的数量之和不得小于#;c.直接测量计算得到索结构的所有被监测量的初始数值,组成被监测量初始向量C;; 在实测得到被监测量初始向量G的同时,实测得到索结构的所有索的初始索力数据、结构的初始几何数据和初始索结构支座角坐标数据;d.根据索结构的设计图、竣工图和索结构的实测数据、索的无损检测数据和初始索结构支座角坐标数据建立索结构的力学计算基准模型A。;e.在力学计算基准模型A。的基础上进行若干次力学计算,通过计算获得索结构被监测量单位变化矩阵」C;f.实测得到索结构的所有指定被监测量的当前实测数值,组成被监测量的当前数值向量C;g.定义被评估对象当前状态向量^被评估对象当前状态向量J的元素个数等于被评估对象的数量,被评估对象当前状态向量J的元素和被评估对象之间是一一对应关系,被评估对象当前状态向量J的元素数值代表对应被评估对象的损伤程度或角位移;h.依据被监测量的当前数值向量C同被监测量初始向量C;、索结构被监测量单位变化矩阵」C和待求的被评估对象当前状态向量d间存在的近似线性关系,该近似线性关系可表达为式1,式1中除i/外的其它量均为已知,求解式1就可以算出被评估对象当前状态向量i/;由于被评估对象当前状态向量i/的元素数值代表对应被评估对象的损伤程度或角位移,所以根据被评估对象当前状态向量确定有哪些索受损及其损伤程度,可以确定支座角位移,即实现了支座角位移的评估和索结构中索系统的健康状态评估;C 二 Ce + M>d式 1。
2.根据权利要求1所述的基于应变监测的识别受损索和支座角位移的健康监测方法, 其特征在于在步骤e中,在力学计算基准模型A0的基础上,通过若干次力学计算获得索结构被监测量单位变化矩阵」C的具体方法为el.在索结构的力学计算基准模型Α。的基础上进行若干次力学计算,计算次数数值上等于每一次计算假设只有一个被评估对象有单位损伤或单位角位移,具体的,如果该被评估对象是索系统中的一根支承索,那么就假设该支承索有单位损伤,如果该被评估对象是一个支座的一个方向的角位移分量,就假设该支座在该角位移方向发生单位角位移,用Dui记录这一单位损伤或单位角位移,其中i表示发生单位损伤或单位角位移的被评估对象的编号;每一次计算中出现单位损伤或单位角位移的被评估对象不同于其它次计算中出现单位损伤或单位角位移的被评估对象,每一次计算都利用力学方法计算索结构的所有被监测量的当前计算值,每一次计算得到的所有被监测量的当前计算值组成一个被监测量计算当前向量;e2.每一次计算得到的被监测量计算当前向量减去被监测量初始向量后再除以该次计算所假设的单位损伤或单位角位移数值,得到一个被监测量变化向量,有#个被评估对象就有#个被监测量变化向量;e3.由这#个被监测量变化向量依次组成有#列的索结构被监测量单位变化矩阵」C ; 索结构被监测量单位变化矩阵」C的每一列对应于一个被监测量变化向量。
全文摘要
基于应变监测的识别受损索和支座角位移的健康监测方法基于应变监测,根据索结构的设计图、竣工图和索结构的实测数据等建立索结构的力学计算基准模型,在力学计算基准模型的基础上进行若干次力学计算,通过计算获得索结构被监测量单位变化矩阵;依据被监测量的当前数值向量同被监测量初始向量、索结构被监测量单位变化矩阵和待求的被评估对象当前状态向量间存在的近似线性关系,可以利用多目标优化算法等合适的算法快速识别出支座角位移和受损索。
文档编号G01B21/22GK102297772SQ201110122620
公开日2011年12月28日 申请日期2011年5月13日 优先权日2011年5月13日
发明者贾春, 韩玉林 申请人:东南大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1