利用光学成像技术测量阻尼的方法

文档序号:5939804阅读:191来源:国知局
专利名称:利用光学成像技术测量阻尼的方法
技术领域
以下的描述涉及测量加工件的阻尼的方法,尤其是涉及利用单个或多个高速照相机测量阻尼的方法。
背景技术
阻尼通常是指部件在被激励时吸收能量的能力。阻尼可以利用称作Q因子的因子来测量。阻尼测量可以用来评价车辆刹车噪音特性并且提供有益的比较,以通过捕获加工件吸收有害振动能的能力来确定加工件振动。阻尼测量可以利用包括阻尼因子、阻尼比、品质因子(“Q因子(Q factor)”)、损耗因子、A的正切和/或比阻尼容量的不同术语来提及。目前阻尼测量的方法可以包括利用激励装置激励部件。激励装置例如可以包括冲击锤或者振动器。阻尼可以在诸如冲击锤等激励装置击打加工件或者部件后被测量。然后,时间和/或频率响应利用诸如加速度计和/或麦克风等传感器被记录。这个数据被处理,以获取也称为阻尼数的Q因子。由于阻尼数(Q因子)取决于冲击锤击打在加工件上的位置、刹车转子上的测量位置以及振动频率,所以要获得提取用于确定Q因子的数的最佳位置需要在加工件上的不同区域进行多次测量。这类型的反复测量处理可能需要一段不适当的时间段来完成。例如,该反复处理可能需要三或者四分钟。在生产或者实验室环境中,由于测量时间引起的延迟可能会造成其它延迟。为了减少测量时间,可以在多个位置同时进行测量。然而,这需要在转子上或其附近设置许多传感器。这增加了所需要的测量通道的数量。因此,期望利用有限的传感器在较少的时间段内来测量阻尼。

发明内容
在一个一般方面中,提供一种测量加工件的阻尼的方法。该方法包括激励加工件、利用光学成像系统测量加工件的动态响应以及根据该动态响应计算阻尼因子和Q因子。在另一个一般方面中,提供一种测量加工件的阻尼的方法,该方法包括将加工件设置在测量表面上、设置用于观察该加工件的高速照相机、利用激励装置来激励该加工件以及记录预定时间量内的加工件的位移时间历史。该方法还包括提取加工件的表面上的经选择的点的位移响应时间历史、确定经选择的振动模态的频率、对时间数据应用滤波器以提取用于阻尼因子和Q因子计算的模态的响应以及计算阻尼因子和Q因子。这些和其它的优点和特征根据结合附图做出的以下描述将变得更明显。


被认为是本发明的主题在本说明书的结尾处的权利要求书中被具体地指出并且清楚地主张。上述和本发明的其它特征以及优点根据结合附图做出的以下的详细描述变得明显,在附图中:图1示出了利用高速照相机测量转子的动态响应的装置的示例;图2示出了表示根据本发明的、测量阻尼因子和Q因子的对数衰减方法的示例的图;图3示出了表示利用时域包络衰减法计算Q因子的示例的图;图4示出了表示通过数字图像相关系统产生的位移输出的示例的图;图5示出了表示随着时间而绘制的响应衰减的量化示例的图;图6示出了表示用于计算Q因子的响应峰值和参数的示例的图;图7示出了表示可以用于计算Q因子的频率响应函数(frequency responsefunction, FRF)的示例的图;以及图8示出了涂敷有斑纹图样和标识的转子的示例。
具体实施例方式现在参考附图,其中本发明参考具体实施例(不是限制本发明)并且根据本发明的示例性实施例来描述,图1示出了高速照相机10,其用于捕获加工件20的动态运动。所捕获的动态运动尤其可以包括响应于激励的加工件的振动。在示例性实施例中,加工件20可以是在振动试验期间的刹车转子。为了举例,以下描述将加工件20视为刹车转子。然而,要理解的是这个示例是非限制性的,并且加工件例如还可以是刹车鼓或者其它部件。高速照相机10在刹车转子20被激励装置30击打后捕获振动,并且这个数据被用于确定在不同频率下刹车转子20的材料中的阻尼。为了举例,以下描述将激励装置30视为冲击锤。然而,要理解的是这个示例是非限制性的,并且激励装置例如还可以是振动器或者类似装置。此外,激励装置30可以是指用于在工作时激励加工件20的外部部件或者系统。即,工作条件可以引起加工件20中的动态响应。例如,车辆中的引擎振动或者悬架振动可能引起加工件20中的动态响应。要理解的是,以上的工作条件的示例是非限制性的,并且其它工作条件可以引起加工件20的动态响应。已经发现,通过使用高速照相机10来记录一次测量(即单个操作)中的刹车转子20的振动,刹车转子20上的任一点的动态响应可以被确定并且被用于获取动态运动响应数据。动态运动响应数据经过如本文描述的进一步处理时,被用于计算例如可以用来测量刹车转子20的阻尼的Q因子和/或阻尼因子。高速照相机10在不同的时间情形下对刹车转子20进行拍照。由图片产生的信息,即动态运动响应数据,被随着时间进行绘制。动态运动响应数据包括刹车转子20的动态位移数据。在随着时间进行绘制时,刹车转子20的3D动态位移被获取。高速照相机10可以通过计算机来控制和操作,以拍摄刹车转子的图片。该计算机可以包括存储在存储器中的软件,该软件控制照片的拍摄并且处理所产生的数据,即动态运动响应数据,以获取3D动态运动分析。高速照相机10可以包括用于例如拍摄、存储和/或处理单张或多张照片等操作的硬件和软件。例如,可以修改诸如来自Vision Research(视觉研究)公司的PHANTOM (幻影)系列和来自Photron公司的FASTCAM系列等照相机硬件系统以及诸如PONTOS (奔涛)、ARAMIS以及VIC-3D (非接触全场应变测量系统)等某些软件系统,以拍摄照片并且处理所产生的数据来获取3D动态运动分析。在一个非限制性的实施例中,例如如图8所示,标识21和/或斑纹图样22被设置在刹车转子20上,以在刹车转子20运动时定位刹车转子20上的不同点。在另一个非限制性的实施例中,光线阴影可以被投射,以在该刹车转子运动时定位刹车转子20上的不同点。在本发明中,使用高速照相机或者照相机10来代替在刹车转子附近布置麦克风、加速度计或者其它传感器的需要。使用照相机10代替加速度计、麦克风或者其它传感器来记录刹车转子20的移动,可以减少或者消除常规系统中所需要的多次击打和测量。同样,本发明对于生产环境的使用可能更加实用。在操作中,以下步骤提供了如何通过计算Q因子和/或阻尼因子来测量阻尼的一个示例:-将刹车转子20设置在支座25上。-例如,如图1所示,将高速照相机或者照相机10布置为邻近刹车转子20,以拍摄刹车转子20。-使用冲击锤30或者其它激励装置来激励刹车转子20。在一个示例性实施例中,该激励装置被装配有力传感器。-记录在预定时间量内的刹车转子的动态响应,例如如图4所示的位移响应时间历史。-提取刹车转子20的表面上的经选择的点的位移响应时间历史。从软件提取的或者由所记录的位移计算出的速度和加速度也可以用于进一步的处理。-确定经选择的振动模态的频率。在一个示例性实施例中,使用快速傅里叶变换(Fast Fourier Transform, FFT)。-对时间数据应用滤波器,以提取用于阻尼因子和Q因子计算的频率和模态以及运行挠曲振型(Operating Deflection Shape)的响应。-计算任何、一些或者所有点的阻尼因子和Q因子。在一个示例性实施例中,任何、一些或者所有点的阻尼因子和Q因子可以利用以下技术中一个来计算:a)时域对数衰减方法:利用这个方法,动态运动响应数据包括由时间历史计算出的动态响应的衰减率。Q因子和阻尼因子由动态响应计算出。该方法在下面被进一步描述。b)利用希尔伯特变换的时域包络和衰变常数计算:在这个方法中,正弦信号的时间信号的包络利用希尔伯特变换和衰减率来计算。Q因子和阻尼因子由该结果来计算。该方法在下面被进一步描述。c)利用快速傅里叶变换来提取输出的频率响应函数并且利用如下所述的3dB方法来确定模态阻尼因子和模态Q因子。3dB方法的变型(称作ndB方法)可以作为替代来被使用,其中“ n ”是任何数字或者分数。d)利用快速傅里叶变换来提取输出的频率响应函数并且利用模态曲线拟合算法/程序来确定阻尼因子和Q因子。在模态曲线拟合处理中,理论曲线拟合成与所测量频率响应函数(FRF)和频率相匹配,并且阻尼和模态形状被估算。来自工作条件的动态响应可以被用于代替加工件的外部激励和利用响应或者通过操作模态分析所获取的阻尼。e)功率输入方法(Power Input Method, PIM):与 Experimental TechniquesVolume26, Issue3, Pages30_32, May2002 中 B.Bloss, M D Rao 的 Measurement of Dampingin Structures by the Power Input Method (“通过功率输入方法测量结构中的阻尼”)中所讨论的类似,这个方法是基于稳态振动下系统的消耗能量与其最大应变能的比较,其提供频率平均阻尼值。除上述方法之外,诸如ASTM方法等标准方法可以利用试验样品而不是刹车转子来被应用。要理解的是,上述技术是如何利用本文所描述的系统来测量阻尼的非限制性示例。其它合适的计算方法也可以被使用。在如上所述的时域对数衰减方法中,对一个脉冲测量系统的自由振动位移振幅的历史变化。如图2所示,自由衰减曲线被产生。对数衰减是在如图2所示的自然衰减振动中两个相邻的位移峰值的比值的自然对数值。在时域包络 衰减计算中,该信号首先被滤波,以提取所需要的频率。然后,正弦信号的包络利用希尔伯特变换被提取。所产生的信号可以在对数标尺上被绘制并且衰减率可以由此获取。这个处理的示例被示出在图3中。在振动响应衰减时,可以在刹车转子20中的阻尼是能量被消耗处的比率测量的情形下来确定模态Q因子。模态Q因子将系统振荡处的频率与该系统消耗其能量的比率相比较。更高的模态Q因子表示相对于振荡频率的更低的能量消耗率。模态Q因子可以通过将冲击力施加到刹车转子20并且测量动态响应的频率响应函数(FRF)来计算出。即,该模态Q因子是上述讨论到的Q因子的特殊情况,即其通过测量动态响应的FRF计算出。图5示出了随着时间而绘制的响应的衰减。由于功率和能量与振荡幅度的平方成
正比,振幅-频率图上的带宽可以被测量为峰值的丨1/W.或者大约-3db。图6示出了用于计算Q因子的响应峰值和参数。如图6中可以看到的,“fn”是固有频率,并且fl和f2是在频率响应函数(FRF)的振幅下降3dB处的频率。与峰值的频率有关的峰值宽度确定刹车转子20中的Q因子和阻尼因子。正如可以看到的,fl和f2之间的差值越大,则峰值越宽并且部件中的阻尼越大。图7示出了用于计算Q因子的频率响应函数(frequency response function, FRF)的不例。
权利要求
1.一种测量加工件的阻尼的方法,包括: 激励所述加工件; 利用光学成像系统测量所述加工件的动态响应;以及 根据所述动态响应计算阻尼因子和Q因子。
2.如权利要求1所述的方法,其中所述加工件是刹车转子。
3.如权利要求1所述的方法,其中所述加工件是刹车鼓。
4.如权利要求1所述的方法,其中计算所述阻尼因子和所述Q因子包括根据所述动态响应的衰减率来所述计算阻尼因子和所述Q因子。
5.如权利要求1所述的方法,其中计算所述阻尼因子和所述Q因子包括基于频率响应函数来计算所述阻尼因子和所述Q因子。
6.如权利要求1所述的方法,其中激励所述加工件包括利用冲击锤来激励所述加工件。
7.如权利要求1所述的方法,其中激励所述加工件包括利用振动器来激励所述加工件。
8.一种测量加工件的阻尼的方法,包括: 将加工件设置在支座上; 设置高速照相机来观察所述加工件; 利用激励装置来激励所述加工件; 记录预定时间量内所述加工件的位移时间历史; 提取所述加工件的表面上的经选择的点的位移响应时间历史; 确定经选择的振动模态的频率; 对所述位移响应时间历史应用滤波器,以提取用于阻尼因子和Q因子计算的运行挠曲振型或者模态的响应;以及计算阻尼因子和Q因子。
9.如权利要求8所述的方法,其中所述加工件是刹车转子。
10.如权利要求8所述的方法,其中所述加工件是刹车鼓。
11.如权利要求8所述的方法,包括以力传感器来装配所述激励装置。
12.如权利要求8所述的方法,其中所述激励装置是冲击锤。
13.如权利要求8所述的方法,其中所述激励装置是振动器。
14.如权利要求8所述的方法,还包括基于位移响应时间历史来计算速度和加速度。
全文摘要
提供了一种测量加工件的阻尼的方法。所述方法包括激励加工件、利用光学成像系统测量加工件的动态响应以及根据所述动态响应来计算阻尼因子和Q因子。所述方法与以下两个处理相关光学成像系统输出动态运动响应数据,并且利用所述数据来获取阻尼因子和Q因子。
文档编号G01M1/14GK103180707SQ201180051363
公开日2013年6月26日 申请日期2011年9月23日 优先权日2010年9月24日
发明者马努基·内拉加德 申请人:罗斯尼弗雷诺斯公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1