非铁磁金属薄板的电磁声发射无损检测装置的制作方法

文档序号:5976934阅读:130来源:国知局
专利名称:非铁磁金属薄板的电磁声发射无损检测装置的制作方法
技术领域
本实用新型的技术方案涉及利用声波发射技术测试金属材料,具体地说是非铁磁金属薄板的电磁声发射无损检测装置。
背景技术
电磁检测是利用材料在电磁作用下呈现出来的电学、磁学性质或材料响应特性(如振动特性、应カ集中特性或声发射特性)来判断材料有关性能和缺陷的实验方法,可以实现对材料缺陷的非接触无损检测,具有灵敏度高和检测速度快等优点,已被广泛地应用于制造业、航天航空、石油化工和其他各个エ业领域。现有技术中基于电磁检测原理对材料缺陷检测的方法主要有常规涡流检测方法、远场涡流检测方法、磁记忆检测方法、漏磁检测方法、低频电磁场检测方法、微波检测方法和电位检测方法,这些方法有ー个共同的不足之处是,其所检测到的是材料缺陷的静态特性,无法得到材料缺陷的活动状态信息。 另ー方面,材料缺陷的声发射检测技术以其高灵敏性和动态监测特性为业界熟知,但现有声发射检测技术一直存在很难从整体信号中提取材料局部缺陷微弱信号的难题,对于实际的エ业应用而言,这极大地限制了声发射检测技术的可信度和应用范围。如何将电磁检测技术和声发射技术相结合,以在保持声发射技术优点的前提下降低信号处理的难度和复杂度,以适于实际的エ业应用,成为ー个重要的研究方向。

实用新型内容本实用新型所要解决的技术问题是提供非铁磁金属薄板的电磁声发射无损检测装置,是ー种基于涡流激励声发射的非铁磁金属薄板的电磁无损检测装置,使用该装置检测非铁磁金属薄板材料克服了现有电磁检测方法无法检测得到材料缺陷的活动状态信息的不足和现有声发射检测技术存在的很难从整体信号中提取材料局部缺陷微弱信号的难题。本实用新型解决该技术问题所采用的技术方案是非铁磁金属薄板的电磁声发射无损检测装置,是ー种基于涡流激励声发射的非铁磁金属薄板的电磁无损检测装置,包括涡流发生器、四个压电换能器S1. S2, S3、S4、前置放大器和PC机,所述涡流发生器由信号产生器、功率放大器和激励线圈构成,其中功率放大器由MOSFET QUMOSFET Q2、ニ极管D1、ニ极管D2、一个变压器和一个谐振电容按下述电路连接构成M0SFET Ql的集电极接190V直流电正极和D2的负极,MOSFET Ql的发射极接ニ极管Dl的负极和变压器同向端I、MOSFETQl的门极通过信号线接信号产生器的信号输出端1,M0SFET Q2的集电极接ニ极管D2的正极和变压器反向端1,MOSFET Q2的发射极接190V直流电负极和Dl的正极,MOSFET Q2的门极通过信号线接信号产生器的信号输出端2,变压器反向端2接谐振电容一端,变压器同向端2接激励线圈一端,谐振电容另一端接激励线圈另一端由此组成回路;涡流发生器的激励线圈平放在待检测非铁磁金属薄板的待检测区域,再将四个压电换能器S1. S2, S3和S4分别按菱形的四个顶点位置安放于该待检测非铁磁金属薄板上,四个压电换能器S1. S2, S3和S4分别通过信号线连接到前置放大器,前置放大器用同轴电缆连接到PC机。上述非铁磁金属薄板的电磁声发射无损检测方法所用的装置,所述涡流发生器中的激励线圈为0. 3mm漆包线绕制的170阻、外径为I. 5cm、内径为0. 5cm和高为Icm的空心线圈。上述非铁磁金属薄板的电磁声发射无损检测方法所用的装置,所述涡流发生器中的信号产生器的型号为固纬SFG-1003,M0SFET Ql和MOSFET Q2的型号为IRF730,ニ极管Dl和ニ极管D2的型号为MUR1620,变压器为用0. 3mm漆包线绕制的110匝线圈和以Philips的TX36/23/15为磁芯的1:1变压器,谐振电容的额定电压为1200V和容量为I. 5uF。上述非铁磁金属薄板的电磁声发射无损检测方法所用的装置,所述信号线为
0.2mm线径的50 Q铜导线,其它连接线和导线均为0. 5mm的漆包线。上述非铁磁金属薄板的电磁声发射无损检测方法所用的装置,所述四个压电换能器Si、S2、S3和S4是商购的,由美国PAC公司生产,型号同为WSA ;所述前置放大器是商购的,由美国PAC公司生产,型号为2/4/6。使用上述非铁磁金属薄板的电磁声发射无损检测方法所用的装置检测非铁磁金属薄板材料的步骤是将脉冲涡流加载到待检测的非铁磁金属薄板上,若待检测的非铁磁金属薄板存在裂纹,会被激发出声发射信号,检测采集该声发射信号,传送声发射信号,将检测到的声发射信号放大,输送放大的信号,进行数据采集与处理并得出結果;具体操作是,将涡流发生器中的激励线圈放置在待检测非铁磁金属薄板的待检测区域,再将四个压电换能器SI、S2、S3和S4按菱形的四个顶点位置安放于该待检测非铁磁金属薄板上,每个压电换能器分别通过信号线连接到前置放大器,该前置放大器再用同轴电缆连接至PC机;开始检测时,让涡流发生器中的信号产生器输出控制信号,该控制信号输入到涡流发生器中的接190V直流电源的功率放大器,该功率放大器产生与控制信号同频和等周期数及电压为190V的脉冲电压,该脉冲电压被加载到涡流发生器中由谐振电容和激励线圈组成的回路上,由此在待检测非铁磁金属薄板上产生同频涡流,若待检测非铁磁金属薄板存在裂纹型缺陷,会被激发出声发射信号,该声发射信号被四个压电传感器Si、S2> S3和S4检测米集并通过信号线输入至前置放大器,再由该前置放大器放大并输入至PC机,该PC机根据所采集到的声发射信号进行ニ维时差定位,从而定位检测出该待检测非铁磁金属薄板存在的裂纹型缺陷。上述检测步骤中,所述控制信号是2 5周、频率为2kHz IOkHz和电压为8V的
方波信号。上述检测步骤中,所述PC机根据所采集到的声发射信号进行ニ维时差定位,其计算步骤是PC机根据输入的待检测非铁磁金属薄板发出的声发射声波的波速V,又根据四个压电换能器Si、S2, S3和S4的坐标,计算出压电换能器S1的探头和压电换能器S2的探头间距为a,压电换能器S3的探头和压电换能器S4的探头的间距为b,再根据四个压电传感器S1. S2, S3和S4采集到的声发射信号先后顺序,确定压电换能器S1和压电换能器S3间采集到声发射信号的时差At1,以及压电换能器S2和压电换能器S4间采集到声发射信号的时差At2,进而根据下面的时差定位计算公式(I)和(2)得到声发射源,即裂纹尖端位置的坐标"X =^- At1Va/2)1 ^ry1(I)J
^ = At2V+ 2-((y-b/2J2 + x2(2)。上述检测步骤中,所述PC机根据所采集到的声发射信号进行ニ维时差定位的程序的流程为分别输入待检测非铁磁金属薄板发出的声发射声波的波速V和四个压电换能器Si、S2、S3和S4的坐标一PC机根据四个压电换能器Si、S2、S3和S4的坐标,计算压电换能器S1的探头和压电换能器S3的探头间的距离a,计算压电换能器S2的探头和压电换能器S4的探头间的距离b —PC机根据采集到的声发射信号到达压电传感器的先后顺序,确定压电换能器S1和压电换能器S3间采集声发射信号的时差△ 以及压电换能器S2和压电换能器S4间采集声发射信号的时差A t2 — PC机根据时差定位公式计算声发射源坐标,实现对待检测非铁磁金属薄板裂纹型缺陷的定位。本实用新型的有益效果是与现有技术相比,本实用新型非铁磁金属薄板的电磁声发射无损检测装置的突出实质性特点是,在其使用中将涡流加载到待检测非铁磁金属薄板上,受到待检测非铁磁金属薄板上的存在的裂纹型缺陷的影响,涡流在裂纹尖端处形成明显的集中效应,导致裂纹尖端附近电流密度急剧增大,在磁场的作用下,裂纹尖端处产生洛伦兹力,且洛仑兹カ的方向使得裂纹两侧分别向外扩展,进而激发出声发射现象,再利用压电换能器检测声发射信号并用PC机进行信号处理即可得到非铁磁金属薄板上裂纹型缺陷的信息,从而实现对非铁磁金属薄板裂纹型缺陷的无损检測。与现有技术相比,本实用新型非铁磁金属薄板的电磁声发射无损检测装置的显著进步是,本实用新型对非铁磁金属薄板的检测有以下优点①在待检测非铁磁金属薄板无外加机械载荷的作用下进行检测,检测得到材料缺陷的活动状态信息,对待检测非铁磁金属薄板的结构不造成二次损伤;②扩大了声发射检测方法的应用范围,不受待检测非铁磁金属薄板的类型和形状的限制;③本实用新型使用激励线圈加载电磁激励,极大地降低了对电源的要求,使得加载方式无需接触,并提高了检测速度;④本实用新型非铁磁金属薄板的电磁声发射无损检测方法操作简单,其装置的组成部件结构简单和价格低廉。
以下结合附图
和实施例对本实用新型进ー步说明。图I是本实用新型非铁磁金属薄板的电磁声发射无损检测装置的构成示意框图。图2是本实用新型非铁磁金属薄板的电磁声发射无损检测装置的涡流发生器的电路原理图。图3是本实用新型非铁磁金属薄板的电磁声发射无损检测装置的检测方法的操作流程示意框图。
具体实施方式
图I所示实施例表明,本实用新型非铁磁金属薄板的电磁声发射无损检测装置由涡流发生器、四个压电换能器、前置放大器和PC机构成。[0024]图2所示实施例表明,本实用新型非铁磁金属薄板的电磁声发射无损检测装置的涡流发生器由信号产生器、功率放大装置和激励线圈构成,其中功率放大器由MOSFET QUMOSFET Q2、ニ极管D1、ニ极管D2、一个变压器和一个谐振电容按下述电路连接构成M0SFETQl的集电极接190V直流电正极和D2的负极,MOSFET Ql的发射极接ニ极管Dl的负极和变压器同向端1、M0SFET Ql的门极通过信号线接信号产生器的信号输出端1,M0SFET Q2的集电极接ニ极管D2的正极和变压器反向端1,MOSFET Q2的发射极接190V直流电负极和Dl的正扱,MOSFET Q2的门极通过信号线接信号产生器的信号输出端2,变压器反向端2接谐振电容一端,变压器同向端2接激励线圈一端,谐振电容另一端接激励线圈另一端由此组成回路。图3所示实施例表明,本实用新型非铁磁金属薄板的电磁声发射无损检测装置的检测方法的操作流程是将脉冲涡流加载到待检测的非铁磁金属薄板上,若待检测的非铁磁金属薄板存在裂纹,会被激发出声发射信号,检测采集该声发射信号,传送声发射信号,将检测到的声发射信号放大,输送放大的信号,进行数据采集与处理并得出結果。实施例I 用如上述图I和图2所述的部件和元器件所构成,所述涡流发生器中的信号产生器的型号为固纬SFG-1003,MOSFET Ql和MOSFET Q2的型号为IRF730,ニ极管Dl和ニ极管D2的型号为MUR1620,变压器为用0. 3mm漆包线绕制的110匝线圈和以Philips的TX36/23/15为磁芯的1:1变压器,谐振电容的额定电压为1200V和容量为I. 5uF。所述涡流发生器中的激励线圈为0. 3mm漆包线绕制的170阻、外径为I. 5cm、内径为0. 5cm和高为Icm的空心线圈。所述信号线为0.2_线径的50 Q铜导线,其它连接线和导线均为0. 5_的漆包线。所述四个压电换能器S1. S2, S3和S4是商购的,由美国PAC公司生产,型号同为WSA。上述非铁磁金属薄板的电磁声发射无损检测方法所用的装置中,所述前置放大器是商购的,由美国PAC公司生产,型号为2/4/6。将涡流发生器中的激励线圈平放在非铁磁性材料金属薄板上,再将四个压电换能器SpS2、S3和S4分别按菱形的四个顶点位置安放于该待检测非铁磁金属薄板上,四个压电换能器Si、S2、S3和S4分别通过信号线连接到前置放大器,该前置放大器用导线连接到PC机。开始检测时,涡流发生器中的信号产生器输出控制信号为2周、频率为5kHz和电压为8V的方波电压,该信号输入到涡流发生器中的接190V直流电源的功率放大器,该功率放大器产生与控制信号同频和等周期数和电压为190V的脉冲电压,该脉冲方波电压被加载到由谐振电容和激励线圈组成的回路上,并在尺寸为500mmX115mmX15mm的待检测铝金属薄板上感生出2周和频率为5kHz的准正弦涡流,若该待检测铝金属薄板存在裂纹,会被激发出声发射信号,该声发射信号被四个压电传感器SpS2、S3和S4检测并通过信号线输入至前置放大器,由该前置放大器放大声发射信号并输入至PC机,该PC机根据所采集到的声发射信号进行ニ维时差定位,其计算步骤是PC机根据输入的待检测铝金属薄板发出的声发射声波的波速V,又根据四个压电换能器S1. S2, S3和S4的坐标,计算出压电换能器S1的探头和压电换能器S2的探头间距为a,压电换能器S3的探头和压电换能器S4的探头的间距为b,,再根据四个压电传感器S1. S2, S3和S4采集到的声发射信号先后顺序,确定压电换能器S1和压电换能器S3间采集到声发射信号的时差△ k以及压电换能器S2和压电换能器S4间采集到声发射信号的时差At2,进而根据下面的时差定位计算公式(I)和(2)得到声发射源,即裂纹尖端位置的坐标
X=~~ AtjV +2^(x- a/2)1 + y1(I){
At2V+1^y_b/1ji +x2 ⑵。上述ニ维时差定位程序流程为分别输入待检测铝金属薄板发出的声发射声波的波速V和四个压电换能器S1、S2、S3和S4的坐标。一PC机根据四个压电换能器S1、S2、S3和S4的坐标,计算压电换能器S1的探头和压电换能器S3的探头间的距离a,计算压电换能器S2的探头和压电换能器S4的探头间的距离b。一 PC机根据采集到的声发射信号先后顺序,确定压电换能器S1和压电换能器S3间采集声发射信号的时差,以及压电换能器S2和压电换能器S4间采集声发射信号的时差A t2。— PC机根据时差定位公式计算声发射源坐标,实现对该待检测铝金属薄板裂纹型缺陷的定位。最終定位检测出该待检测铝金属薄板存在的裂纹缺陷位置,定位误差为I 2mm。实施例2除涡流发生器中的信号产生器输出控制信号为5周、频率为IOkHz和电压为8V的脉冲方波电压,待检测非铁磁金属薄板为尺寸为500mmX 115mmX 15mm的待检测铜金属薄板之外,其他均同实施例I。最終定位检测出该待检测铜金属薄板存在的裂纹缺陷位置,定位误差为I 2_。实施例3除涡流发生器中的信号产生器输出控制信号为3周、频率为7. 5kHz和电压峰峰值为380V的脉冲方波电压,待检测非铁磁金属薄板为尺寸为500mmX 115mmX 15mm的待检测铜金属薄板之外,其他均同实施例I。最終定位检测出该待检测铜金属薄板存在的裂纹缺陷位置,定位误差为I 2_。
权利要求1.非铁磁金属薄板的电磁声发射无损检测装置,其特征在于是ー种基于涡流激励声发射的非铁磁金属薄板的电磁无损检测装置,包括涡流发生器、四个压电换能器Si、S2, s3、S4、前置放大器和PC机,所述涡流发生器由信号产生器、功率放大器和激励线圈构成,其中功率放大器由MOSFET QUMOSFET Q2、ニ极管D1、ニ极管D2、一个变压器和一个谐振电容按下述电路连接构成M0SFET Ql的集电极接190V直流电正极和D2的负极,MOSFET Ql的发射极接ニ极管Dl的负极和变压器同向端I、MOSFET Ql的门极通过信号线接信号产生器的信号输出端1,MOSFET Q2的集电极接ニ极管D2的正极和变压器反向端1,MOSFET Q2的发射极接190V直流电负极和Dl的正极,MOSFET Q2的门极通过信号线接信号产生器的信号输出端2,变压器反向端2接谐振电容一端,变压器同向端2接激励线圈一端,谐振电容另一端接激励线圈另一端由此组成回路;涡流发生器的激励线圈平放在待检测非铁磁金属薄板的待检测区域,再将四个压电换能器SpS2、S3和S4分别按菱形的四个顶点位置安放于该待检测非铁磁金属薄板上,四个压电换能器Si、S2、S3和S4分别通过信号线连接到前置放大器,前置放大器用同轴电缆连接到PC机。
2.根据权利要求I所述非铁磁金属薄板的电磁声发射无损检测装置,其特征在于所述涡流发生器中的激励线圈为0. 3_漆包线绕制的170匝、外径为I. 5cm、内径为0. 5cm和高为Icm的空心线圈。
3.根据权利要求I所述非铁磁金属薄板的电磁声发射无损检测装置,其特征在于所述涡流发生器中的信号产生器的型号为固纬SFG-1003,MOSFET Ql和MOSFET Q2的型号为IRF730,ニ极管Dl和ニ极管D2的型号为MUR1620,变压器为用0. 3mm漆包线绕制的110匝线圈和以Philips的1乂36/23/15为磁芯的1:1变压器,谐振电容的额定电压为1200V和容量为I. 5uF。
4.根据权利要求I所述非铁磁金属薄板的电磁声发射无损检测装置,其特征在于所述信号线为0. 2mm线径的50Q铜导线,其它连接线和导线均为0. 5mm的漆包线。
专利摘要本实用新型非铁磁金属薄板的电磁声发射无损检测装置,涉及利用声波发射技术测试金属材料,包括涡流发生器、四个压电换能器S1、S2、S3、S4、前置放大器和PC机,所述涡流发生器由信号产生器、功率放大器和激励线圈构成;涡流发生器的激励线圈平放在待检测非铁磁金属薄板的待检测区域,再将四个压电换能器S1、S2、S3和S4分别按菱形的四个顶点位置安放于该待检测非铁磁金属薄板上,四个压电换能器S1、S2、S3和S4分别通过信号线连接到前置放大器,前置放大器用同轴电缆连接到PC机。使用该装置克服了现有技术无法检测得到材料缺陷的活动状态信息的不足和存在很难从整体信号中提取材料局部缺陷微弱信号的难题。
文档编号G01N27/90GK202599905SQ20122016185
公开日2012年12月12日 申请日期2012年4月17日 优先权日2012年4月17日
发明者刘素贞, 金亮, 张闯, 杨庆新, 张献, 李阳 申请人:河北工业大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1