距离测量装置及距离测量方法

文档序号:6170831阅读:155来源:国知局
距离测量装置及距离测量方法
【专利摘要】本发明提供距离测量装置及距离测量方法。指定由感测用图案光投影的目标对象的图像的摄像单元感测的图像中的、用图案光投影的区域。基于所指定的区域,从所感测的图像中的、除用所述图案光投影的区域以外的区域中,搜索所述目标对象的几何特征。基于所搜索到的所述目标对象的几何特征以及所述目标对象的模型的几何特征,来推导所述目标对象的位置及姿态。
【专利说明】距离测量装置及距离测量方法
【技术领域】
[0001]本发明涉及距离测量装置及距离测量方法,尤其涉及用于测量给定了三维形状的对象的位置及姿态的技术。
【背景技术】
[0002]近年来,随着机器人技术的发展,机器人逐渐替代人类来处理复杂任务。复杂任务的典型示例包括组装工业产品。为了控制机器人自主地执行组装任务,机器人必须通过诸如手等的末端执行器来抓取部件。为了通过机器人手来抓取部件,必须测量要抓取的部件与机器人之间的相对位置及姿态,并且必须基于测量结果来制定移动方案,以便对致动器进行实际控制。
[0003]在机器人以外的领域中,需要测量相对于环境和对象的位置及姿态。例如,在MR(混合现实,Mixed Reality)中,为了在真实图像上合成由计算机生成的虚拟对象,必须测量位置及姿态(orientation)。使用机器人上安装的照相机或者距离(range)传感器来执行机器人的位置/姿态测量,并且作为代表性的方法,使用利用二维图像或距离图像的方法。在MR领域中,已研究了如下的技术,即利用由安装在HMD(头戴式显示器,Head MountedDisplay)上的照相机感测的图像,来执行HMD的位置/姿态测量。
[0004]专利文献I (日本特愿2010-137680号公报)公开了精确且快速地测量高速移动的对象的位置及姿态的方法。在该方法中,通过利用普通照相机来感测用图案光投影的对象的图像、而获得的一个观测图像,被分离为用于边缘提取的区域和用于距离图像生成的区域,并且,利用这些区域来执行边缘提取和距离图像生成。这样,通过互补地利用基于二维边缘的位置/姿态测量和基于距离图像的位置/姿态测量,实现了位置/姿态测量的高精度化和高速化。
[0005]然而,利用专利文献I中公开的方法,由于基于通过对三维模型进行投影而获得的边缘模型来去除一部分图案光投影区域,因此能够准确地检测图像的边缘,但是,由图案光生成的距离图像的质量倾向于粗糙。当目标对象被放置为跨越观测图像的深度方向上的宽范围时,该现象尤其显著,从而经常导致位置/姿态测量的精度下降。

【发明内容】

[0006]本发明是鉴于上述问题而作出的,并且提供用于以更高的精度计算对象(尤其是被放置为在图像深度方向上有延伸的对象)的位置及姿态的技术。
[0007]根据本发明的一个方面,提供了一种距离测量装置,该距离测量装置包括:图像感测单元,其被配置为感测用图案光投影的目标对象的图像;指定单元,其被配置为在由所述图像感测单元感测的图像中,指定用所述图案光投影的区域;搜索单元,其被配置为基于所指定的区域,从所感测的图像中的、除用所述图案光投影的区域以外的区域中,搜索所述目标对象的几何特征;以及推导单元,被配置为基于由所述搜索单元搜索到的所述目标对象的几何特征以及所述目标对象的模型的几何特征,来推导所述目标对象的位置及姿态。[0008]根据本发明的另一方面,提供了一种距离测量方法,该距离测量方法包括以下步骤:在由被配置为感测用图案光投影的目标对象的图像的图像感测单元感测的图像中,指定用图案光投影的区域;基于所指定的区域,从所感测的图像中的、除用所述图案光投影的区域以外的区域中,搜索所述目标对象的几何特征;以及基于在所述搜索步骤中搜索到的所述目标对象的几何特征以及所述目标对象的模型的几何特征,来推导所述目标对象的位置及姿态。
[0009]通过以下参照附图对示例性实施例的描述,本发明的其他特征将变得清楚。
【专利附图】

【附图说明】
[0010]图1是示出系统的结构示例的图;
[0011]图2是示出图像处理装置104的功能结构示例的框图;
[0012]图3A至图3F是用于说明三维几何模型的图;
[0013]图4是要由图像处理装置104执行的处理的流程图;
[0014]图5是示出步骤S403中的处理的详情的流程图;
[0015]图6是示出感测图像的示例的图;
[0016]图7是示出二值图像的示例的图;
[0017]图8是示出图案光掩模的示例的图;
[0018]图9是示出步骤S404中的处理的详情的流程图;
[0019]图1OA和图1OB是用于说明关联处理的图;
[0020]图11是用于说明线段的投影图像与检测的边缘之间的关系的图;以及
[0021]图12是示出机器人系统的结构示例的图。
【具体实施方式】
[0022]下面,将参照附图描述本发明的实施例。请注意,下文中要描述的实施例是当具体实施本发明时的示例,并且是在权利要求的范围中记载的结构的具体实施例。
[0023][第一实施例]
[0024]首先,将参照图1描述根据本实施例的系统的结构。对象101是作为要测量位置及姿态(位置/姿态)的对象的目标对象。在本实施例中,为了简单起见,假定在某一位置仅放置作为位置/姿态测量目标的一个对象101,如图1中所示。然而,下面要描述的位置/姿态测量处理并不在很大程度上依赖于对象的形状、数量和放置形式。例如,本发明适用于如下的情况,在该情况下,要在具有不同形状的多个对象被混合和堆积的状态下,测量某一对象的位置及姿态。
[0025]投影机102利用规定的图案光来照射对象。在本实施例中,使用狭缝光作为要用以照射对象101的图案光。稍后将描述投影机102的详情。
[0026]需要图像感测设备103来感测真实空间中的静止图像或电影,并且使用图像感测设备103来感测由投影机102用狭缝光照射的对象101的图像。然后,图像感测设备103将自身感测的图像(感测图像或者观测图像)输出至图处理装置104。稍后将描述图像感测设备103的详情。
[0027]图像处理装置104执行投影机102和图像感测设备103的操作控制,并且使用从图像感测设备103获得的感测图像来计算对象101的位置及姿态。
[0028]下面,将参照图2中示出的框图描述图像处理装置104的功能结构示例。
[0029]位置/姿态计算单元201使用基于图像感测设备103感测的图像的、边缘对应检测单元205和距离图像生成单元206的处理结果,来计算对象101的位置及姿态。然后,位置/姿态计算单元201将计算出的对象101的位置及姿态输出至合适的输出目的地。
[0030]通过把能够用三维CAD软件来处理的CAD模型本身或者三维CAD模型,转换成在计算机图形学领域中使用的多个多边形元素,来获得三维模型信息202。在该实施例中,使用模拟对象101的形状并且由多边形元素构成的三维几何模型。下面,将参照图3A至3F来描述由多边形元素构成的三维几何模型。
[0031]由多边形元素构成的三维几何模型包括诸如点、线和面的元素,如图3A至3F所示。图3A至3C示出了相同的三维几何模型。
[0032]由多边形元素构成的三维几何模型的模型信息与图3A中例示的三维几何模型的各顶点相关联地,来管理各顶点的索引以及各顶点的三维坐标值,如图3D所示。
[0033]此外,该模型信息与图3B所例示的三维几何模型的各个边相关联地,来管理各个边的索引以及各个边的两端的顶点的索引,如图3E所示。
[0034]此外,该模型信息与图3C中所例示的三维几何模型的各个面(多边形)相关联地,来管理各个多边形的索引、各个多边形的各个边的索引、以及各多边形的法向量,如图3F所示。
[0035]这样的三维模型信息202被存储在图像处理装置104中的合适存储器或者图像处理装置104能够访问的外部存储器中。
[0036]初始近似位置/姿态信息203被给定作为计算对象101的位置及姿态所需的迭代计算的初始值。作为该初始近似位置/姿态信息203,合适的值被预先设置,并且被存储在图像处理装置104中的合适的存储器或者图像处理装置104能够访问的外部存储器中。该初始近似位置/姿态信息203可以由用户使用操作单元(未示出)来设置。
[0037]除非另外指定,否则,假定位置及姿态均是以图像感测设备103的位置及姿态为基准的、在坐标系(照相机坐标系)上的位置及姿态。此外,假定在下面的描述中的“对象的坐标系”表示针对各个对象而在本地设置的坐标系。
[0038]边缘对应检测单元205检测投影到由图像感测设备103感测的图像上的三维几何模型与感测图像中包括的对象101的图像之间的对应边缘。
[0039]距离图像生成单元206根据由图像感测设备103感测的图像生成距离图像,该距离图像用各个像素代表从图像感测设备103到对象101上的各个位置的间距(distance)。在本实施例中,与距离图像的生成相关联地,通过使用多狭缝光作为图案光的三角测量来计算间距。然而,图案光不限于此,并且也可以使用其他图案,只要不需要多次图像感测操作即可。例如,可以使用随机点图案或者局部平面图案。作为另一选择,可以使用聚光灯。对于没有投射用于距离测量的照明的区域,当能够通过环境光获得足够的明亮度时,不投射特别的光。否则,改变照明图案,以投射例如均匀白光。此外,在图案投影方法中,可以反转投影区域以将图案表现为阴影。
[0040]投影机102是液晶投影机,并且是投射狭缝光作为规定的图案光的投影设备。例如,通过以下文献中公开的方法来预先校准投影机的固有参数(焦距、主点位置以及透镜畸变参数)。
[0041]Z.Zhang,flexible new technique for camera calibration,^IEEETransactions on Pattern Analysis and Machine Intelligence, vol.22, n0.11, pp.1330-1334,2000。
[0042]请注意,可以使用除投影机102以外的设备,只要该设备能够投射狭缝光即可。例如,可以使用利用DMD (数字微镜器件,Digital Mirror Device)或LCOS的投影机。
[0043]例如,通过前述Zhang的方法来预先校准图像感测设备103的固有参数(焦距、主点位置以及透镜畸变参数)。此外,例如,通过前述Zhang的方法或者以下文献中公开的方法,来预先校准图像感测设备103与投影机102之间的相对位置及姿态,由此使得能够使用图案光进行三角测量。
[0044]Seiji Iguchi and Kosuke Sato,"Three-dimensional ImageMeasurement"(SH0K0D0,1990)。
[0045]下面,将参照图4描述由图像处理装置104执行以计算对象101的位置及姿态的处理,其中,图4示出了该处理的流程图。
[0046]在步骤S401中,位置/姿态计算单元201从图像处理装置104的内部或外部存储器中,读出三维模型信息202。请注意,位置/姿态计算单元201可以获取由用户通过操作操作单元(未示出)而输入的三维模型信息202。作为另一选择,可以将多个三维几何模型的多个三维模型信息202存储在存储器中,可以识别由图像感测设备103感测的图像中包括的对象,并且可以读出与所识别的对象相对应的三维模型信息202。
[0047]接下来,在步骤S402中,位置/姿态计算单元201从图像处理装置104的内部或外部存储器中,读出初始近似位置/姿态信息203。请注意,位置/姿态计算单元201可以获取由用户通过操作操作单元(未示出)而输入的初始近似位置/姿态信息203。作为另一选择,可以通过光学传感器来决定和获取初始近似位置/姿态信息203,其中,该光学传感器使用固定于场景的照相机,通过感测安置在对象上的标记来测量位置及姿态。此外,可以使用任意的传感器,只要这些传感器能够测量6个自由度的位置及姿态即可。此外,当预先知道对象被放置的近似位置及姿态时,可以将这些值用作初始近似位置/姿态信息203。
[0048]接下来,在步骤S403中,边缘对应检测单元205和距离图像生成单元206基于由图像感测设备103感测的图像,分别生成图案光掩模和距离图像。稍后,将参照图5中示出的流程图描述步骤S403中的处理的详情。[0049]接下来,在步骤S404中,位置/姿态计算单元201、边缘对应检测单元205或者控制单元(未示出)基于在步骤S401至S403中获得的各个信息,来决定对象101的三维几何模型的位置及姿态。由此,计算出位置及姿态,作为对象101的位置及姿态。
[0050]下面,将参照图5描述在上述步骤S403中的处理的详情,其中,图5示出了该处理的流程图。
[0051]在步骤S501中,控制单元(未示出)控制投影机102利用作为规定的图案光的狭缝光来照射对象101。
[0052]在步骤S502中,控制单元(未示出)控制图像感测设备103感测利用规定的图案光照射的对象101的图像。图6示出了图像感测设备103的感测图像的示例。为了简单起见,在下面的描述中,将假定由图像感测设备103感测的图像是图6中所例示的图像。[0053]在步骤S503中,控制单元(未示出)控制投影机102结束作为规定的图案光的狭缝光的照射。
[0054]在步骤S504中,边缘对应检测单元205检测感测图像中的具有图案光的区域,作为图案光投影区域,并且生成二值图像,该二值图像具有与感测图像相同的垂直大小和水平大小,并使用不同的像素值来表现图案光投影区域和非图案光投影区域。以如下的方式生成二值图像。
[0055]也即,参照感测图像中的各个像素位置的亮度值,并且当所参照的像素位置(x,y)处的亮度值不小于阈值时,判断该像素位置属于图案光投影区域,并且将二值图像中的像素位置(x,y)处的像素值设置为“I”。另一方面,如果感测图像中的像素位置(x,y)处的亮度值小于阈值,则判断该像素位置不属于图案光投影区域,并且将二值图像中的像素位置(X,y)处的像素值设置为“O”。请注意,“I”和“O”的意义可以反转,并且本发明不限于这些值。也就是说,二值图像中的各个像素位置处的像素是否位于属于图案光投影区域的像素位置处,仅仅需要通过像素值来判别。
[0056]除了如上所述比较亮度值与阈值以外,还可以通过各种其他方法,来判断感测图像中的各个像素位置处的像素是否属于图案光投影区域。例如,可以通过如下两种方法来实施此类判断,其中,一种方法是基于狭缝光的颜色的成分信息以及感测图像中的各个像素的颜色的成分信息来进行此种判别,另一方法是基于颜色信息改变的方式来进行此种判别。
[0057]图7示出了由图6所示的感测图像生成的二值图像的示例。在图7中,图6中示出的感测图像中的具有图案光投影区域的区域用黑线表示,并且这些黑线由像素值为“I”的像素构成(黑线以外的区域由像素值为“O”的像素构成)。
[0058]接下来,在步骤S505中,距离图像生成单元206使用在步骤S504中生成的二值图像生成距离图像。可以根据以下文献中记载的方法,来计算作为距离图像的各个像素的像素值的间距。
[0059]R.Hartley and A.Zisserman^Multiple view geometry in computer visionSecond Edition"(Cambridge University Press,2003)。
[0060]在该实施例中,基于由投影机102投影的图案光中的像素位置、感测图像上的对应位置、投影机102和图像感测设备103的固有参数以及投影机102与图像感测设备103之间的相对位置及姿态,来计算间距。然后,将与感测图像的各个像素位置相对应的视线向量乘以这些像素位置的间距,由此计算作为穿过感测图像的各个像素位置的视线向量的指向目的地的位置(照相机坐标系中的三维位置),作为点组数据。
[0061]在步骤S506中,边缘对应检测单元205生成通过改变二值图像(即通过放大二值图像中的像素值为“I”的区域)而获得的图像作为图案光掩模(具有与二值图像相同的垂直大小和水平大小)。
[0062]首先,生成图案光掩模作为二值图像的副本。然后,参照图案光掩模中的像素位置,并且当所参照的像素位置U,y)处的像素的像素值为“I”时,将关注像素的邻近像素(例如,与关注像素相邻的像素)的像素值更新为“I”。
[0063]图8示出了由图7所示的二值图像生成的图案光掩模的示例。在图8中,图7中示出的二值图像中的图案光投影区域(由像素值为“I”的像素构成)被放大为更粗的黑线,并且放大的黑线由像素值为“I”的像素构成(除放大的黑线以外的区域由像素值为“O”的像素构成)。
[0064]在稍后的位置/姿态计算处理中,该图案光掩模被用于计算感测图像上的三维几何模型与对象101之间的边缘的偏差(误差)。图案光投影区域被放大的原因,是为了降低三维几何模型的边缘与通过图案光投影形成的边缘之间的对应错误的风险。稍后将详细描述该关联。
[0065]接下来,将参照图9描述步骤S404中的处理的详情,其中,图9示出了该处理的流程图。在该实施例中,在决定对象101的位置及姿态所需的迭代计算中,使用Gauss-Newton方法(高斯-牛顿方法)。因此,通过迭代计算迭代地校正对象101的位置及姿态(在下面的描述中用“s”表示)的近似值,从而计算位置及姿态。
[0066]在本实施例中的位置及姿态的计算中,以下述方式优化估计的位置及姿态。也即,通过使两类间距的总和最小化,来优化估计的位置及姿态,其中,一类间距是感测图像上的对象101的边缘、与基于估计的位置及姿态而投影到该图像上的三维几何模型的线段之间的间距,另一类间距是由点组数据表示的各个位置、与估计的位置及姿态的三维几何模型之间的间距。更具体地说,二维图像上的点和线之间的带符号的间距和三维空间中的点和面之间的带符号的间距通过线性Taylor展开(泰勒展开),而表现为对象101的位置及姿态的极小改变的线性函数。然后,通过建立并求解与位置及姿态的极小改变相关联的线性联立方程,使得带符号的间距变为0,来计算对象101的位置及姿态的极小改变,以重复地校正位置及姿态。
[0067]在步骤S901中,位置/姿态计算单元201将上述初始近似位置/姿态信息203设置为以下迭代计算的初始值(初始位置及姿态S)。
[0068]在步骤S902中,边缘对应检测单元205将具有由当前值s表示的位置及姿态的三维几何模型(在实际中仅边被投影)投影到感测图像上。此外,位置/姿态计算单元201与构成三维几何模型的各个面相关联地,将各面的各个顶点的坐标值转换为照相机坐标系中的坐标值。
[0069]然后,边缘对应检测单元205在感测图像中的对象101与投影到感测图像上的三维几何模型之间,来进行边缘的关联。下面,将参照图1OA和图1OB描述该关联处理。在图1OA中,与图案光掩模中的像素值为“I”的区域相对应的感测图像中的区域被表示为图案光掩模1004。
[0070]通过投影具有由当前值s表示的位置及姿态的三维几何模型的线段而获得的线段,被示出为线段1001。线段的投影图像在图像上也是线段。接下来,在投影的线段1001上设置控制点1002,使得控制点1002在图像上具有相等的间隔,并且针对各个控制点1002,在投影的线段1001的法线方向上设置搜索线1003。然后,针对各个控制点1002,在如下的线上检测一维边缘,其中,所述的线位于针对该控制点设置的搜索线1003上、该控制点的规定的间距以内,并且不包括图案光掩模1004。然后,保持最靠近检测的边缘的控制点1002的点,作为对应点1005。在实际中,尽管图案光掩模1004包括由图案光形成的边缘,但是由于以这种方式搜索对应点,因此能够避免由图案光形成的边缘被错误地关联。
[0071]图1OB示出了原点是控制点、横坐标标绘搜索线、并且纵坐标标绘亮度梯度的绝对值的图。在前一图像中,边缘被检测为像素值的亮度梯度的绝对值的极值。在这种情况下,亮度梯度的绝对值的极值大于预定值并且最接近控制点的点,被检测作为对应点1006(图1OA中的对应点1005)。
[0072]请注意,在本实施例中,当检测并非由图案光导致的边缘时,在除图案光掩模1004以外的区域中检测边缘。然而,此时的处理顺序也可以是以下的顺序,但是获得相同的效果。也即,在检测到边缘之后,判别检测到的边缘是否位于掩模区域内。如果检测到的边缘位于掩模区域内,则采用该边缘;如果检测到的边缘位于该区域之外,则检测下一边缘。
[0073]在步骤S903中,位置/姿态计算单元201计算计算位置及姿态所需的(求解线性联立方程所需的)系数矩阵以及误差向量。为了使作为三维几何模型的边的线段与边缘相关联,并且为了计算对象101的位置及姿态,必须计算计算位置及姿态所需的系数矩阵以及误差向量。
[0074]请注意,系数矩阵的各元素是针对位置及姿态的近似值的极小改变的线性偏微分系数。针对边缘,计算图像坐标的偏微分系数,并且针对点组,计算三维坐标的偏微分系数。各个误差向量与检测到的边缘相关联的,是投影的线段与该边缘之间在图像上的间距,而与点组数据相关联的,是模型的面与点之间在三维空间中的间距。
[0075]图11是用于说明线段的投影图像和检测到的边缘的图。在图11中,图像的水平方向和垂直方向分别被表示为u轴和V轴。某一控制点(在图像上等间隔地分割各个投影线段的点)在图像上的坐标用(u0, v0 )来表示,控制点所属的线段在图像上的倾角被表示为相对于u轴的倾角Θ。通过投射线段的两端的三维坐标,倾角Θ被计算为使得图像上的两端的坐标耦合的线的倾角。线段在图像上的法向量用(sine,-cos0 )来表示。此外,控制点的对应点在图像上的坐标用(U’,V’ )来表示。穿过对应点的坐标(U’,V’ )并且具有倾角Θ的直线(图11中的虚线)上的点(U,V)可以通过下式来表示:
[0076]usin θ -vcosθ = d(I)
[0077]d = U' sin θ -v1 cos θ
[0078]控制点在图像上的位置依据对象101的位置及姿态而改变。对象101的位置及姿
态的自由度是6个自由度。也即,s是六维向量,其包括代表对象101的位置的三个元素和
代表姿态的三个元素。代表姿态的三个元素用例如Euler角(欧拉角)或如下的三维向量来
表示,在所述三维向量中,方向代表穿过原点的旋转轴,并且法线代表旋转角。可以通过在
坐标(u0,v0)附近进行线性Taylor展开,来近似求得依据位置及姿态而改变的点在图像上
的坐标(U,V),比如利用下式:
【权利要求】
1.一种距离测量装置,该距离测量装置包括: 图像感测单元,其被配置为感测用图案光投影的目标对象的图像; 指定单元,其被配置为在由所述图像感测单元感测的图像中,指定用所述图案光投影的区域; 搜索单元,其被配置为基于所指定的区域,从所感测的图像中的、除用所述图案光投影的区域以外的区域中,搜索所述目标对象的几何特征;以及 推导单元,被配置为基于由所述搜索单元搜索到的所述目标对象的几何特征以及所述目标对象的模型的几何特征,来推导所述目标对象的位置及姿态。
2.根据权利要求1所述的距离测量装置,其中,所述搜索单元放大用所述图案光投影的区域,并从除所放大的区域以外的区域中搜索所述目标对象的几何特征。
3.根据权利要求1所述的距离测量装置,其中,所述搜索单元提取所感测的图像中的几何特征,并从所提取的几何特征中排除用所述图案光投影的区域的几何特征。
4.根据权利要求1所述的距离测量装置,其中,所述指定单元基于所感测的图像中的亮度值,来指定用所述图案光投影的区域。
5.根据权利要求1所述的距离测量装置,其中,所述指定单元基于被给定作为所述目标对象的位置及姿态的位置及姿态、所述目标对象的几何形状以及所述图案光的形状,来指定用所述图案光投影的区域。
6.根据权利要求1所述的 距离测量装置,其中,所述搜索单元包括: 生成单元,其被配置为定义所感测的图像中的具有所述图案光的区域作为图案光区域,并生成与所述图案光区域相对应的掩模图像,并且 所述搜索单元基于所述掩模图像,来从所感测的图像中的、除用所述图案光投影的区域以外的区域中,搜索所述目标对象的几何特征。
7.根据权利要求6所述的距离测量装置,该距离测量装置还包括: 距离图像生成单元,其被配置为由所述图案光区域,生成以从所述图像感测单元到所述目标对象的各个位置的间距作为像素值的距离图像;以及 被配置为基于在三维空间中的间距以及在二维空间中的间距、来计算所述模型的位置及姿态的单元,其中,根据由所述距离图像代表的所述目标对象上的各个位置、以及所述模型上的与所述各个位置相对应的位置,来计算所述在三维空间中的间距,并且所述在二维空间中的间距,是在所感测的图像上叠加的模型的各个点、与和所述各个点相关联地搜索到的所述目标对象的点之间的间距。
8.根据权利要求1所述的距离测量装置,该距离测量装置还包括: 输出单元,其被配置为把由所述推导单元推导出的位置及姿态,输出至对操纵所述目标对象的机器人手臂进行控制的控制器。
9.一种距离测量方法,该距离测量方法包括以下步骤: 在由被配置为感测用图案光投影的目标对象的图像的图像感测单元感测的图像中,指定用图案光投影的区域; 基于所指定的区域,从所感测的图像中的、除用所述图案光投影的区域以外的区域中,搜索所述目标对象的几何特征;以及 基于在所述搜索步骤中搜索到的所述目标对象的几何特征以及所述目标对象的模型的几何特征,来推 导所述目标对象的位置及姿态。
【文档编号】G01C21/00GK103512548SQ201310239490
【公开日】2014年1月15日 申请日期:2013年6月17日 优先权日:2012年6月18日
【发明者】广田祐一郞, 降簱久义, 中里祐介 申请人:佳能株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1