基于可溯源同步测尺的双纵模激光测距装置与方法与流程

文档序号:12013703阅读:246来源:国知局
基于可溯源同步测尺的双纵模激光测距装置与方法与流程
本发明属于相位激光测量技术,主要涉及一种相位激光测距装置与方法。

背景技术:
大尺寸测量在发展大型精密机械制造、重大科技工程、航空航天工业、船舶工业和微电子装备业等大型光机电一体化装备加工制造中备受关注,其中几米至几百米范围的大尺寸测量是航空航天器及巨型船舶中的大型零部件加工和整体装配的重要基础,其测量方法与设备性能的优劣直接影响工件质量及装配精度,进而影响整套装备的运行质量、性能及寿命。多测尺相位测距方法利用一组从大到小的测尺波长对被测距离进行逐级精化测量,解决了测量范围和测量精度之间的相互矛盾,能在数百米超长作用距离内达到亚毫米至微米级的静态测量精度。在多测尺相位激光测距技术中,尽管多测尺逐级测量的方式兼顾了测量范围与测量精度的需求,但由于光源技术的限制,粗测尺与精测尺不能够同时产生并进行相位测量,造成了测量时间过长,测量结果实时性差的问题,另一方面由于在多测尺相位激光测距技术中以测尺波长大小为基准进行测量,测尺波长的稳定性直接影响激光测距的精度,因此如何获得高稳定性的粗测尺与精测尺波长,并且使之同时参与测量是目前提高多测尺相位激光测距精度与实时性的主要问题。测尺的稳定性与同步产生技术与光源技术有关,通过对相位激光测距法激光光源技术的分析可知,目前国内外位相差法的调制手段有电流直接调制、光调制和模间拍频调制等。直接电流调制法利用半导体激光器,光强随电流变化的特点,来对半导体激光器的输出光强进行调制,具有简单易调制等优点。文献[SiyuanLiu,JiubinTanandBinkeHou.MulticycleSynchronousDigitalPhaseMeasurementUsedtoFurtherImprovePhase-ShiftLaserRangeFinding.Meas.Sci.Technol.2007,18:1756–1762]与专利[多频同步调制的大量程高精度快速激光测距装置与方法,公开号:CN1825138]都阐述了一种基于半导体激光器的电流调制方法,其采用多频同步合成的复合信号对激光输出功率进行同步调制,实现了在同一时刻得到多频调制测距中各测尺频率针对被测距离的测量结果,但是为了获得线性调制,使工作点处于输出特性曲线的直线部分,必须在加调制信号电流的同时加一适当的偏置电流使其输出信号不失真,直流偏置的引入加大了功耗,在长时间工作时温度升高,会影响输出光功率的稳定性,导致调制波形变形,且随着调制频率的增加,调制深度会降低,导致调制波形变形,不能进行高频调制,限制了精测尺波长的大小及稳定度;另一方面在大尺寸测量的实际应用过程中,激光在长距离传输过程中容易造成激光功率的损失,造成对调制波波形的影响,进而影响测尺的准确度及稳定度,其测尺的频率稳定度一般小于10-7。利用光调制方法主要为声光调制法和电光调制法,其调制带宽受到激光光束直径等等多因素的影响,也会带来波形变形,特别是在高频(千兆赫兹)时就更为严重,因此它所形成大的测尺,测量精度由于受到最大测尺频率的限制而难以提高。利用激光器不同模式输出所形成的拍频信号作为测尺的方法,称为模间调制。此方法的调制带宽与激光器的腔长相关,He-Ne激光器稳频技术成熟,它的频率稳定度高,由其所获得的测尺的稳定度高,专利[高精度多频同步相位激光测距装置与方法,公开号:CN102419166]和专利[基于双声光移频的多频同步相位激光测距装置与方法,公开号:CN102305591A]都利用了He-Ne激光器的模间调制并结合声光移频技术,获得了高精度的精测尺和粗测尺,但该方法所产生的测尺不具备可溯源性,其测量时绝对测尺长度需另一检测系统给出,增加了测量的复杂性;另一方面,这种利用外差法获得精测尺相位的方法,其处理信号的频率较高,会对后续的相位测量难度和测量精度造成一定的影响,假定测相精度为0.05o,距离测量精度要达到1um-10um,则信号频率至少为2GHz-20GHz,远超出信号处理电路的带宽。专利[超外差式接收装置以及接收方法、以及接收装置用半导体集成电路,公开号:CN102484492A]都介绍了一种超外差干涉信号处理技术,清华大学张存满[张存满等,超外差干涉绝对距离测量研究综述,光学技术1998,(1):7-9.]介绍了超外差的绝对距离测量方法,该方法降低了信号的处理频率,更容易达到较高的测量精度。但该技术一方面,只能得到一个测尺,且不具备可溯源性,不能进行多测尺测量,更谈不上多测尺的同步性;另一方面超外差得到测尺波长较小,一般在微米量级,只能用于表面微形状的测量。为了提高激光器输出频率的稳定性,出现了以碘饱和吸收稳频激光器的输出激光频率作为稳频基准的稳频方法,利用碘的饱和吸收谱线对He-Ne激光器和半导体激光器进行偏频锁定控制。我国也进行了研究,例如专利ZL200910072518.5和专利ZL200910072519.X等都描述了一种利用碘饱和吸收He-Ne稳频激光器的偏频锁定装置,使偏频锁定后的激光输出频率具有很高的频率稳定度,具有输出频率可溯源的优点,基于上述方法的启发本专利设计了以频率基准激光器输出激光频率为稳频基准的多测尺光源技术,将激光器输出频率溯源到碘稳频或者飞秒频率梳激光器的基准频率,并以干涉方法使不同溯源频率形成不同的测距测尺,进一步将测距测尺溯源到频率基准,解决目前在相位激光测距技术中出现的缺少能兼顾多测尺的同步性和可溯源性的高精度测距装置与方法的问题。为了提高激光器输出频率的稳定性,出现了以碘饱和吸收稳频激光器的输出激光频率作为稳频基准的稳频方法,利用碘的饱和吸收谱线对He-Ne激光器和半导体激光器进行偏频锁定控制。我国也进行了研究,例如专利ZL200910072518.5和专利ZL200910072519.X等都描述了一种利用碘饱和吸收He-Ne稳频激光器的偏频锁定装置,使偏频锁定后的激光输出频率具有很高的频率稳定度,具有输出频率可溯源的优点,但激光的输出频率达到1014Hz,所对应的测尺在400-700nm之间,测量范围在nm级别,不能用于远距离激光测距,亟需一种将高频率稳定度激光频率转换为可溯源的大范围激光测距测尺,并使之同步产生的技术。综上所述,目前在相位激光测距技术中缺少一种能兼顾多测尺的同步性和可溯源性的高精度测距装置与方法。

技术实现要素:
本发明的目的是为了解决在现有相位激光测距技术中缺少一种能兼顾多测尺的同步性和溯源性的装置与方法的问题,提供一种基于可溯源同步测尺的双纵模激光测距装置与方法,达到增加测距灵活性、简化测距步骤、提高测量效率与精度及稳定度、实时性的目的。本发明的目的是这样实现的:一种基于可溯源同步测尺的双纵模激光测距装置,由测尺生成单元、激光移频单元、扩束准直镜组和测量光路及电路单元组成,测尺生成单元发出的激光输出到激光移频单元的输入端,激光移频单元输出的一路激光通过扩束准直镜组输出到测量光路及电路单元的一个输入端,激光移频单元输出的另一路激光直接输入到测量光路及电路单元的另一个输入端;所述测尺生成单元的结构是:频率基准激光器发射的激光束到达分光器的输入端,分光器的第一输出端连接一号分光镜的一个输入端,一号分光镜的一个输出端连接一号光电探测器的输入端,分光器的第二输出端连接二号分光镜的一个输入端,二号分光镜的输出端连接二号光电探测器的输入端,一号光电探测器和二号光电探测器的输出端连接单片机的输入端,单片机的两个输出端连接腔长调整执行器的两个输入端,腔长调整执行器的两个输出端分别连接一号双纵模He-Ne激光器和二号双纵模He-Ne激光器的输入端,一号双纵模He-Ne激光器的一个输出端连接一号分光镜的一个输入端,一号双纵模He-Ne激光器的另一个输出端连接三号反射镜的输入端,三号反射镜的输出端连接一号偏振片的输入端,二号双纵模He-Ne激光器的一个输出端连接二号分光镜的一个输入端,二号双纵模He-Ne激光器的另一个输出端连接二号反射镜的输入端;所述激光移频单元的结构是:测尺生成单元的一个输出端连接九号反射镜的输入端,九号反射镜的输出端连接三号分光镜的一个输入端,三号分光镜的输出端连接四号分光镜的一个输入端,测尺生成单元的另一个输出端连接一号偏振分光镜的输入端,一号偏振分光镜的一个输出端连接一号半波片的输入端,一号半波片的输出端连接二号偏振分光镜的输入端,二号偏振分光镜的一个输出端连接三号偏振分光镜的一个输入端,二号偏振分光镜的另一个输出端连接四号反射镜的输入端,四号反射镜的输出端连接一号激光移频器的一个输入端,一号DDS信号源的输出端连接一号激光移频器的另一个输入端,一号激光移频器的输出端连接五号反射镜的输入端,五号反射镜的输出端连接三号偏振分光镜的另一个输入端,三号偏振分光镜的输出端连接三号分光镜的另一个输入端,三号分光镜的输出端连接四号分光镜一个输入端,一号偏振分光镜的另一个输出端连接六号反射镜的输入端,六号反射镜的输出端经过二号半波片连接四号偏振分光镜的输入端,四号偏振分光镜的一个输出端连接五号偏振分光镜的一个输入端,四号偏振分光镜的另一个输出端连接七号反射镜的输入端,七号反射镜的输出端连接二号激光移频器的一个输入端,二号DDS信号源的输出端连接二号激光移频器的另一个输入端,二号激光移频器的输出端连接八号反射镜的输入端,八号反射镜33的输出端连接五号偏振分光镜的另一个输入端,五号偏振分光镜的输出端连接四号分光镜的另一个输入端;所述测量光路及电路单元的结构是:激光移频单元的一个输出端连接十二号反射镜的输入端,十二号反射镜的输出端连接五号反射镜的输入端,五号反射镜的一个输出端通过二号偏振片与三号光电探测器的输入端连通,三号光电探测器的输出端连接一号低通滤波器的输入端,一号低通滤波器的输出端连接一号混频器的一个输入端,三号DDS信号源的一个输出端连接一号混频器的另一个输入端,一号混频器的输出端连接一号鉴相器的一个输入端,五号反射镜的另一个输出端通过三号偏振片与四号光电探测器的输入端连通,四号光电探测器的输出端连接二号低通滤波器的输入端,二号低通滤波器的输出端连接二号鉴相器的一个输入端,扩束准直镜组的输出端连接六号偏振分光镜的一个输入端,六号偏振分光镜的一个输出端通过一号四分之一波片与十号反射镜的输入端连通,十号反射镜的输出端通过一号四分之一波片与六号偏振分光镜的一个输入端连通,六号偏振分光镜的一个输出端通过二号四分之一波片与十一号反射镜的输入端连通,十一号反射镜的输出端通过二号四分之一波片与六号偏振分光镜的另一个输入端连通,六号偏振分光镜的另一个输出端连接八号分光镜的一个输入端,八号分光镜的一个输出端通过四号偏振片与五号光电探测器的输入端连通,五号光电探测器的输出端连接三号低通滤波器的输入端,三号低通滤波器的输出端连接三号混频器的一个输入端,三号DDS信号源的另一个输出端连接三号混频器的另一个输入端,三号混频器的输出端连接一号鉴相器的另一个输入端,八号分光镜的另一个输出端通过五号偏振片与六号光电探测器的输入端连通,六号光电探测器的输出端连接四号低通滤波器的输入端,四号低通滤波器的输出端连接二号鉴相器的另一个输入端。一种基于可溯源同步测尺的双纵模激光测距方法,其具体步骤如下:步骤一、开启频率基准激光器、一号双纵模He-Ne激光器、二号双纵模He-Ne激光器,在经过预热和稳频之后,通过反馈控制,将一号双纵模He-Ne激光器和二号双纵模He-Ne激光器输出频率锁定在频率基准激光器的一定频率范围之内,一号双纵模He-Ne激光器输出频率为v1和v4的双频激光,二号双纵模He-Ne激光器输出频率为v2和v3的双频激光,其中v1和v4的双频激光经过一号偏振片,调整偏振角度使得只让频率为v1的激光通过;步骤二、由步骤一所形成的三种频率的激光进入激光移频单元,其中一束双频激光用一号偏振分光镜分出频率为v2和v3两束激光,频率为v2的激光经过一号半波片后用二号偏振分光镜分出两束偏振方向互相垂直的激光,其中一束经过一号激光移频器,由一号DDS信号源驱动一号激光移频器,移频频率为f1,频率为v3的激光经过二号半波片后用四号偏振分光镜也分出两束偏振方向互相垂直的激光,其中一束经过二号激光移频器,由二号DDS信号源驱动二号激光移频器,移频频率为f2,最后各种频率的激光合并,其中共有五种频率,分别为v1、v2、v3、v2+f1和v3+f2,这束激光入射到四号分光镜分为两束光,一束作为参考激光束,另一束作为测量激光束出射到测量目标;步骤三、参考激光束经五号分光镜分为两束激光束,其中一束激光束经偏振方向与v1相同的二号偏振片后,频率为v1、v2和v3的水平方向的偏振激光进入到三号光电探测器进行转换,其输出电信号,其频率为v1-v2,以此作为粗测尺,另一束激光经偏振方向与v1成45度的三号偏振片后入射到四号光电探测器,四号光电探测器输出的电信号经过二号低通滤波器滤除了高频电信号,保留低频电信号,其频率为f1-f2,以此作为精测尺;步骤四、测量开始时,参考面十号反射镜固定不动,移动十一号反射镜至目标端,测量距离为L,测量光束经测量反射镜反射后,与参考面反射回来的光束在六号偏振分光镜处汇聚,进入测量电路,测量激光束经八号分光镜分为两束激光束,一束激光束经偏振方向与v1相同的四号偏振片后,频率为v1、v2和v3的水平方向的偏振激光进入到五号光电探测器进行转换,其输出电信号,其频率为v1-v2,以此作为粗测尺,测尺长为c/|v1-v2|,另一束激光经偏振方向与v1成45度的五号偏振片后入射到六号光电探测器,六号光电探测器输出的电信号经过四号低通滤波器滤除了高频电信号,保留低频电信号,其频率为f1-f2,以此作为精测尺,测尺长为c/|v2-v3|;步骤五、由一号鉴相器和二号鉴相器分别得到频率为v1-v2和f1-f2的两路电信号的相位差φ1和φ2,根据公式求得粗测尺的距离测量值Lc,并将其代入公式求得精测尺的相位整数值其中floor(x)函数返回x值的整数部分,最后根据公式求得被测距离值:式中:c为光速,n为环境的空气折射率。本发明的特点和有益效果是:第一,本发明提出了一种可溯源的多测尺产生方法与装置,该装置与方法利用频率基准型频率基准激光器对两台双纵模激光器进行稳频和反馈控制,并利用稳频后所输出的四个模式激光中的三个不同频率的激光以超外差形式形成激光测距精测尺,使输出激光频率与所形成的激光测距测尺波长可直接溯源到频率/波长基准,并可根据实际需要调整稳频控制点,进而对测尺波长进行调节,增加了测距的灵活性,克服了现有测距装置中测尺不可直接溯源的缺点,简化了一般测距装置在绝对测长时测尺波长需另一检测系统需给出的步骤,提高了测量效率与精度,这是本发明区别现有装置的创新点之一。第二,本发明提出了一种基于外差与超外差结合的多测尺相位同步获取方法与装置。该装置与方法利用激光移频器对部分频率的激光进行移频,产生多种频率的激光,并同时利用外差方法和超外差方法分别获得粗测尺和精测尺,进而使之同时参与测量,实现了粗精测尺相位的同步测量,缩短了测量时间,提高了测量结果的实时性。通过外差与超外差相结合的激光干涉技术获得测试相位信号,消除了共模干扰,提高了测尺的稳定度,同时降低了相位测量电路接收信号的频率,降低电路设计的难度,这是本发明区别现有装置的创新点之二。附图说明图1为本发明的激光测距装置的总体结构示意图;图2为测尺生成单元的结构示意图;图3为激光移频单元的结构示意图;图4为测量光路及电路单元的结构示意图。图中件号说明:1、测尺生成单元、2、激光移频单元、3、扩束准直镜组、4、测量光路及电路单元、5、频率基准激光器、6、分光器、7、一号分光镜、8、二号分光镜、9、一号光电探测器、10、二号光电探测器、11、单片机、12、腔长调整执行器、13、一号双纵模He-Ne激光器、14、二号双纵模He-Ne激光器、15、二号反射镜、16、三号反射镜、17、一号偏振片、18、一号偏振分光镜、19、一号半波片、20、二号偏振分光镜、21、四号反射镜、22、一号DDS信号源、23、一号激光移频器、24、五号反射镜、25、三号偏振分光镜、26、三号分光镜、27、六号反射镜、28、二号半波片、29、四号偏振分光镜、30、七号反射镜、31、二号DDS信号源、32、二号激光移频器、33、八号反射镜、34、五号偏振分光镜、35、九号反射镜、36、四号分光镜、37、十二号反射镜、38、五号分光镜、39、二号偏振片、40、三号光电探测器、41、一号低通滤波器、42、一号混频器、43、三号DDS信号源、44、一号鉴相器、45、三号偏振片、46、四号光电探测器、47、二号低通滤波器、48、二号鉴相器、49、六号偏振分光镜、50、一号四分之一波片、51、十号反射镜、52、二号四分之一波片、53、十一号反射镜、54、八号分光镜、55、四号偏振片、56、五号光电探测器、57、三号低通滤波器、58、三号混频器、59、五号偏振片、60、六号光电探测器、61、四号低通滤波器。具体实施方式下面结合附图对本发明实施方案进行详细描述。一种基于可溯源同步测尺的双纵模激光测距装置,包括扩束准直镜组3,所述装置由测尺生成单元1、激光移频单元2、扩束准直镜组3和测量光路及电路单元4组成,测尺生成单元1发出的激光输出到激光移频单元2的输入端,激光移频单元2输出的一路激光通过扩束准直镜组3输出到测量光路及电路单元4的一个输入端,激光移频单元2输出的另一路激光直接输入到测量光路及电路单元4的另一个输入端;所述测尺生成单元1的结构是:频率基准激光器5发射的激光束到达分光器6的输入端,分光器6的第一输出端连接一号分光镜7的一个输入端,一号分光镜7的一个输出端连接一号光电探测器9的输入端,分光器6的第二输出端连接二号分光镜8的一个输入端,二号分光镜8的输出端连接二号光电探测器10的输入端,一号光电探测器9和二号光电探测器10的输出端连接单片机11的输入端,单片机11的两个输出端连接腔长调整执行器12的两个输入端,腔长调整执行器12的两个输出端分别连接一号双纵模He-Ne激光器13和二号双纵模He-Ne激光器14的输入端,一号双纵模He-Ne激光器13的一个输出端连接一号分光镜7的一个输入端,一号双纵模He-Ne激光器13的另一个输出端连接三号反射镜16的输入端,三号反射镜16的输出端连接一号偏振片17的输入端,二号双纵模He-Ne激光器14的一个输出端连接二号分光镜8的一个输入端,二号双纵模He-Ne激光器14的另一个输出端连接二号反射镜15的输入端;所述激光移频单元2的结构是:测尺生成单元1的一个输出端连接九号反射镜35的输入端,九号反射镜35的输出端连接三号分光镜26的一个输入端,三号分光镜26的输出端连接四号分光镜36的一个输入端,测尺生成单元1的另一个输出端连接一号偏振分光镜18的输入端,一号偏振分光镜18的一个输出端连接一号半波片19的输入端,一号半波片19的输出端连接二号偏振分光镜20的输入端,二号偏振分光镜20的一个输出端连接三号偏振分光镜25的一个输入端,二号偏振分光镜20的另一个输出端连接四号反射镜21的输入端,四号反射镜21的输出端连接五号反射镜24的输入端,五号反射镜24的输出端连接一号激光移频器23的一个输入端,一号DDS信号源22的输出端连接一号激光移频器23的另一个输入端,一号激光移频器23的输出端连接三号偏振分光镜25的另一个输入端,三号偏振分光镜25的输出端连接三号分光镜26的另一个输入端,三号分光镜26的输出端连接四号分光镜36一个输入端,一号偏振分光镜18的另一个输出端连接六号反射镜27的输入端,六号反射镜27的输出端经过二号半波片28连接四号偏振分光镜29的输入端,四号偏振分光镜29的一个输出端连接五号偏振分光镜34的一个输入端,四号偏振分光镜29的另一个输出端连接七号反射镜30的输入端,七号反射镜30的输出端连接二号激光移频器32的一个输入端,二号DDS信号源31的输出端连接二号激光移频器32的另一个输入端,二号激光移频器32的输出端连接八号反射镜33的输入端,八号反射镜33的输出端连接五号偏振分光镜34的另一个输入端,五号偏振分光镜34的输出端连接四号分光镜36的另一个输入端;所述测量光路及电路单元4的结构是:激光移频单元2的一个输出端连接十二号反射镜37的输入端,十二号反射镜37的输出端连接五号反射镜38的输入端,五号反射镜38的一个输出端通过二号偏振片39与三号光电探测器40的输入端连通,三号光电探测器40的输出端连接一号低通滤波器41的输入端,一号低通滤波器41的输出端连接一号混频器42的一个输入端,三号DDS信号源43的一个输出端连接一号混频器42的另一个输入端,一号混频器42的输出端连接一号鉴相器44的一个输入端,五号反射镜38的另一个输出端通过三号偏振片45与四号光电探测器46的输入端连通,四号光电探测器46的输出端连接二号低通滤波器47的输入端,二号低通滤波器47的输出端连接二号鉴相器48的一个输入端,扩束准直镜组3的输出端连接六号偏振分光镜49的一个输入端,六号偏振分光镜49的一个输出端通过一号四分之一波片50与十号反射镜51的输入端连通,十号反射镜51的输出端通过一号四分之一波片50与六号偏振分光镜49的一个输入端连通,六号偏振分光镜49的一个输出端通过二号四分之一波片52与十一号反射镜53的输入端连通,十一号反射镜53的输出端通过二号四分之一波片52与六号偏振分光镜49的另一个输入端连通,六号偏振分光镜49的另一个输出端连接八号分光镜54的一个输入端,八号分光镜54的一个输出端通过四号偏振片55与五号光电探测器56的输入端连通,五号光电探测器56的输出端连接三号低通滤波器57的输入端,三号低通滤波器57的输出端连接三号混频器58的一个输入端,三号DDS信号源43的另一个输出端连接三号混频器58的另一个输入端,三号混频器58的输出端连接一号鉴相器44的另一个输入端,八号分光镜54的另一个输出端通过五号偏振片59与六号光电探测器60的输入端连通,六号光电探测器60的输出端连接四号低通滤波器61的输入端,四号低通滤波器61的输出端连接二号鉴相器48的另一个输入端。所述激光移频单元2的一号激光移频器23和二号激光移频器32均包括声光移频器、电光移频器,且激光频率可以调节。所述测尺生成单元1中频率基准激光器5包括碘稳频激光器、飞秒激光频率梳激光器,且频率稳定度优于10-12。一种基于可溯源同步测尺的双纵模激光测距方法,其具体步骤如下:步骤一、开启频率基准激光器5、一号双纵模He-Ne激光器13、二号双纵模He-Ne激光器14,在经过预热和稳频之后,通过反馈控制,将一号双纵模He-Ne激光器13和二号双纵模He-Ne激光器14输出频率锁定在频率基准激光器5的一定频率范围之内,一号双纵模He-Ne激光器13输出频率为v1和v4的双频激光,二号双纵模He-Ne激光器14输出频率为v2和v3的双频激光,其中v1和v4的双频激光经过一号偏振片17,调整偏振角度使得只让频率为v1的激光通过;步骤二、由步骤一所形成的三种频率的激光进入激光移频单元2,其中一束双频激光用一号偏振分光镜18分出频率为v2和v3两束激光,频率为v2的激光经过一号半波片19后用二号偏振分光镜20分出两束偏振方向互相垂直的激光,其中一束经过一号激光移频器23,由一号DDS信号源22驱动一号激光移频器23,移频频率为f1,频率为v3的激光经过二号半波片28后用四号偏振分光镜29也分出两束偏振方向互相垂直的激光,其中一束经过二号激光移频器32,由二号DDS信号源31驱动二号激光移频器32,移频频率为f2,最后各种频率的激光合并,其中共有五种频率,分别为v1、v2、v3、v2+f1和v3+f2,这束激光入射到四号分光镜36分为两束光,一束作为参考激光束,另一束作为测量激光束出射到测量目标;步骤三、参考激光束经五号分光镜38分为两束激光束,其中一束激光束经偏振方向与v1相同的二号偏振片39后,频率为v1、v2和v3的水平方向的偏振激光进入到三号光电探测器40进行转换,其输出电信号,其频率为v1-v2,以此作为粗测尺,另一束激光经偏振方向与v1成45度的三号偏振片45后入射到四号光电探测器46,四号光电探测器46输出的电信号经过二号低通滤波器47滤除了高频电信号,保留低频电信号,其频率为f1-f2,以此作为精测尺;步骤四、测量开始时,参考面十号反射镜51固定不动,移动十一号反射镜53至目标端,测量距离为L,测量光束经测量反射镜53反射后,与参考面反射回来的光束在六号偏振分光镜49处汇聚,进入测量电路,测量激光束经八号分光镜54分为两束激光束,一束激光束经偏振方向与v1相同的四号偏振片55后,频率为v1、v2和v3的水平方向的偏振激光进入到五号光电探测器56进行转换,其输出电信号,其频率为v1-v2,以此作为粗测尺,测尺长为c/|v1-v2|,另一束激光经偏振方向与v1成45度的五号偏振片后入射到六号光电探测器60,六号光电探测器60输出的电信号经过四号低通滤波器61滤除了高频电信号,保留低频电信号,其频率为f1-f2,以此作为精测尺,测尺长为c/|v2-v3|;步骤五、由一号鉴相器和二号鉴相器分别得到频率为v1-v2和f1-f2的两路电信号的相位差φ1和φ2,根据公式求得粗测尺的距离测量值Lc,并将其代入公式求得精测尺的相位整数值其中floor(x)函数返回x值的整数部分,最后根据公式求得被测距离值:式中:c为光速,n为环境的空气折射率。所述两路电信号的相位差φ1与相位差φ2的测量在同一时刻进行。所用精测尺与粗测尺均可溯源。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1