一种输电变压器电性故障检测方法

文档序号:6234495阅读:268来源:国知局
一种输电变压器电性故障检测方法
【专利摘要】本发明提出一种输电变压器电性故障检测方法,其重点对电性故障进行监测,该输电变压器电性故障检测方法能够在进行三比值法检测之前预先进行电性故障的判断,假如判断为电性故障预先进行气体组分的检测,如果未涉及到固体绝缘材料分解,选择继续使用三比值法检测,假如监测涉及到固体绝缘材料分解则选择本申请的二次检测判断法进行检测。这样可以最大程度上避免因多重因素影响而产生的测量不精确或不稳定,使得三比值法检测效果更优,避免了由于固体绝缘类故障所产生的二氧化碳(CO2)以及一氧化碳(CO)对诊断造成的影响。
【专利说明】一种输电变压器电性故障检测方法

【技术领域】
[0001 ] 本发明涉及一种输电变压器电性故障检测方法,属于输电【技术领域】。

【背景技术】
[0002]由于变压器油具有优良的散热和绝缘性能,因此油浸式电力变压器在电力系统中得到广泛的引用。在正常的运行过程中,变压器会在机械应力以及热、电等各种因素的影响下慢慢老化,并生成一些可燃性气体。如果变压器存在内部潜伏性故障,故障部位释放出的能量会加速绝缘材料的裂解,促使油中溶解气体的含量以及产气速率大大提高。通过获取变压器油样本,采用气相色谱的方法就可以获取油中溶解气体各组分的含量,从而对变压器的健康状况做出评估或者对存在异常的变压器进行故障情况的分析。因此,变压器油中溶解气体分析对油浸式变压器故障诊断有着重要的意义。经过总结分析发现变压器油中溶解气体的来源主要包括以下三个方面:绝缘油的分解产气;固体绝缘材料的分解产气;其他方面的来源。变压器油是在天然石油的基础上通过某些化学工艺精炼提取得到的。它是一种混合物,其中包含了各种的碳氢化合物,主要有烷烃、烯烃、环烷烃以及芳香烃等等。碳氢两种元素作为绝缘油的主要元素,占到全部重量的95% -99%,其它是一些氧、氮、硫及一些微量兀素。
[0003]绝缘油包含很多种类的碳氢化合物,这些化合物分子含有CH,CH2,CH3等官能团,通过碳氢键和碳碳键连接起来。一些碳氢键和碳碳键会在电、热等因素作用下断裂,形成碳氢自由基和不稳定的氢原子。这些自由基和氢原子又会迅速参与到一系列复杂的化学反应中从而形成新的化合物,主要有氢气以及一些低分子烃类气体,如甲烷(CH4)、乙烷(C2H6)、乙烯(C2H4)、乙炔(C2H2)等等。
[0004]固体绝缘材料主要有绝缘纸板、绝缘纸,它们都是以木浆作为主要原料,从化学成分上来说,主要由纤维素、半纤素以及木质素等成分组成。其中纤维素是主要成分,包含碳氧键、葡萄糖普键以及无水右旋糖环。通过深入了解这些化学键的性质,可以发现这些化学键比碳氢键更脆弱。因此,当变压器发生一些热性故障以及放电故障的时候,这些化学键很容易发生裂解,进而通过一系列复杂的化学反应而形成新的物质。
[0005]除此之外,人为的一些操作也可能导致这些气体的产生。比如:对发生故障的设备进行维修之后没能对绝缘油进行彻底的脱气处理,这样就会导致绝缘油中还存在一些剩余故障气体;在油箱中还有绝缘油的情况下对变压器进行焊接操作可能也会导致绝缘油的分解产气;在切换有载分接开关的时候可能会因为电位的不固定而造成放电,导致开关室绝缘油的分解形成某些故障气体,并且这些气体随着开关室的绝缘油渗入变压器主油箱中。
[0006]变压器故障类型可以分为很多种,不同的分类方式可以获得不同结果。若根据故障回路的不同可以分为电路、磁路以及油路三种类型;按照故障的发展速度可以分为潜伏性和突发性两大类;如果按照故障性质来划分,则可以分为热性故障、电性故障和机械故障,但是机械故障通常以热性故障或者电性故障的形式展现出来。固体绝缘纤维和矿物绝缘油是目前变压器采用的主要绝缘材料。当变压器发生内部潜伏性故障时,绝缘材料就会在热、电等作用下产生一些可燃性气体。在故障发展的初级阶段,生成的气体会溶解于变压器油中,因此变压器油中溶解气体分析对内部潜伏性故障及其发展程度判断极其有效。在基于油中溶解气体数据的变压器故障诊断中,变压器故障类型被划分为热性故障以及电性故障。
[0007]其中,电性故障通常是变压器内部在高电应力作用下造成的绝缘性能劣化,按照能量密度的不同,电性故障可以分为高能放电(即电弧放电)、低能放电(即火花放电)和局部放电三种不同的故障类型。按照故障分析原因来看,局部放电主要原因:在内部高电压的作用下,固体绝缘结构中出现空腔,或者表面出现毛刺、尖角等不光滑部位,导体边缘因为绝缘性能薄弱以及电场集中,从而造成局部放电,并导致X蜡的形成。低能放电:由于有不良连接现象,导致电位不固定,进而发生火花放电或者电弧,可能发生在屏蔽环中、导体之间或者绕组的线圈之间,这是一种间歇性放电,它的放电能量密度比较大。高能放电:局部高电场或者由于短路形成闪络或电弧,沿着平面放电;绕组匝间或者层间的绝缘被击穿;各种原因造成的变压器内部短路,包括低压对地、接头之间、绕组线圈之间等等;引线存在断裂或者有对地闪络现象以及分接开关的飞弧。由于放电的能量密度很大,可能使绝缘材料性能迅速劣化,对变压器造成严重损伤。
[0008]而三比值法是一种根据气体浓度的相对比值来进行变压器故障诊断的方法。它依据变压器绝缘材料在故障能量的作用下生成的气体成分含量的相对比值与故障点温度存在的密切关系,从五种特征气体组分中选取气体扩散系数以及在绝缘油中溶解度相似的两种气体做比值。当获得三种比值的编码之后,按照导则所规定表所列出的故障类型判断方法就可以很容易的对故障类型以及可能的故障原因做出判断。
[0009]当然,三比值法在进行变压器故障判断时也存在比较明显的不足之处,例如由产气机理的分析可以发现,当气体各组分含量以及产气速率都没有超标,变压器运行状态正常,三比值法诊断是无效的,只有当气体含量超标或者产气速率超标或者有足够的依据判定变压器存在故障的时候,三比值法诊断才会有意义。
[0010]还有当变压器故障涉及到固体绝缘材料分解的时候,会生成大量的二氧化碳(C02)以及一氧化碳(CO),但是导则所推荐的三比值法并没有参考二氧化碳(C02)以及一氧化碳(CO)的信息,因此这对于固体绝缘类电性故障的诊断造成很大的影响。
[0011]因此为克服上述缺陷,有必要对目前采用的三比值法进行改进以提高诊断电力变压器电性故障的精度和稳定性,同时避免发生误判操作或其他因素产生不良影响。


【发明内容】

[0012]为了解决上述技术问题,本发明提出一种输电变压器电性故障检测系统,其重点对电性故障进行监测,该输电变压器电性故障检测系统能够在进行三比值法检测之前预先进行电性故障的判断,假如判断为电性故障则预先进行气体组分的检测判断,如果未涉及到固体绝缘材料分解,选择继续使用三比值法检测,假如监测涉及到固体绝缘材料分解则选择本申请的二次检测判断法进行检测。这样可以最大程度上避免因多重因素影响而产生的测量不精确或不稳定,使得三比值法检测效果更优,避免了由于固体绝缘类故障所产生的二氧化碳(C02)以及一氧化碳(CO)对诊断造成的影响。
[0013]为实现上述目的,本发明适应不同的故障类型以及故障来源的影响,电性故障检测系统采取了二次检测判断法和三比值法两种检测方法,采用的技术手段为:
[0014]方案1、一种输电变压器电性故障检测系统,包括以下步骤:
[0015]步骤1:首先启动预警操作步骤,设置i值、K值以及计数器N清零,其中i = 1,为整数,K ( 6,优选为3,在组分浓度检测模块中检测每个气体组分的浓度得到各个浓度值Di,依次判断各个气体组分的浓度值是否超出了各自的极限值D1,一旦对应的气体组分超出极限值,则进行计数器N的加I操作,当计数器N大于等于K时,即超出极限值的气体组分数量超过K时,则启动进入检测工作;
[0016]步骤2:进入检测工作之后,检测得出特征气体的组分量,当各组分量满足(C2H2+H2) /CnHn≥A的条件时,则表明存在电性故障可能性,假如不满足(C2H2+H2) /CnHn ^ A的条件时,有可能存在热性故障可能性,则启动热性故障判断及检测过程;满足上述条件会启动电性故障的报警,提示进行电性故障诊断;
[0017]步骤3:基于是否满足条件(C0+C02)/CnHn≥B来判断是否进入二次检测判断法还是进入三比值法来进行故障检测,当满足条件(C0+C02)/CnHn ^ B时,表明此时有过量的固体绝缘类故障所产生的二氧化碳(C02)以及一氧化碳(CO),此时需要选择使用二次检测判断法,假如不满足(C0+C02)/CnHn≥B,则表明并未发生过量的固体绝缘类故障,则可以继续使用三比值法。
[0018]步骤4:上述二次检测判断法的具体判断过程如下:
[0019]I).当满足(C2H2+H2)/(H2+CnHn) > Vl且H2/CnHn > V2时,表示变压器可能存在高能电弧放电故障,此时需要进行二次检测上述组分含量进行进一步判断,而二次检测之前需要延迟t时间,假如仍然满足(C2H2+H2) / (H2+CnHn) > Vl且H2/CnHn > V2,此时表明存在高能电弧放电故障;
[0020]2).当满足CnHn/(H2+CnHn) <V3且H2/CnHn>V4时,表示变压器可能存在火花放电故障,此时需要进行二次检测上述组分含量进行进一步判断,而二次检测之前需要延迟t时间,假如仍然满足CnHn/(H2+CnHn) < V3且H2/CnHn > V4,此时表明存在火花放电故障;
[0021]3).当满足CH4/CnHn>V5且H2+C2H2/CnHn>V6时,表示变压器可能存在局部放电故障,此时需要进行二次检测上述组分含量进行进一步判断,而二次检测之前需要延迟t时间,假如仍然满足CH4/CnHn > V5且H2+C2H2/CnHn > V6,此时表明存在局部放电故障;
[0022]上式中,H2,CH4,C2H4,C2H6,C2H2来分别表示各个组分量,而总烃含量用CnHn表示,A代表用来判断是否存在热性故障的第一阈值,B代表用来判断是否存在固体绝缘类故障的第二阈值,VI,V2,V3,V4,V5,V6分别代表相关经验值或设置阈值。
[0023]方案2、根据方案I的输电变压器电性故障检测系统,其特征在于,每个气体组分包括 H2,CH4, C2H4, C2H6, C2H2,总烃。
[0024]方案3、根据方案I的输电变压器电性故障检测系统,其特征在于,通常情况下,K可设置为K≤6,优选为3。
[0025]方案4、根据方案I的输电变压器电性故障检测方法,其特征在于,A = 70-85%,B=15-30%, Vl = 55-85%, V2 = 42-74%, V3 = 35-55%, V4 = 35-90%, V5 = 72-90%,V6 = 80-90%。
[0026]经研究发明,采用了上述技术手段,改变了现有输电变压器控制系统的单层次判断模式,提高利用三比值法判断变压器故障类型的准确性;优化了变压器控制系统的预警故障工作模式,减少了由于各种原因导致的误判误操作的几率,保证了输出预警状态的准确性,同时也通过二次检测判断的方法实现了对各级故障预警的进一步验证检测,增强了预警系统的应用性和可靠性。

【专利附图】

【附图说明】
[0027]图1为本发明的输电变压器结构示意图;
[0028]图2为本发明输电变压器电性故障检测系统简图;
[0029]图3为本发明输电变压器电性故障检测方法的流程简图。

【具体实施方式】
[0030]如图1所示,本发明公开了一种油浸式输电变压器,该油浸式输电变压器结构示意图如图1所示,该变压器包括覆盖整个变压器的变压器壳体1,连接到变压器壳体I上的绝缘油箱2,变压器衬垫3,以及输电变压器的主要功能件绕组线圈4和铁芯5,检测装置6和测温计7位于变压器壳体I上方边缘处,用于进行相关控制数据的检测,位于绝缘油箱2内的绝缘油10以及空气层11。
[0031]如图2所示,本发明的输电变压器电性故障检测系统包括输电变压器ECU单元,储存器单元,组分浓度检测模块,电性故障检测模块,热性故障检测模块,三比值法编码判断模块以及电性故障报警单元。其中组分浓度检测模块,电性故障检测模块,热性故障检测模块,三比值法编码判断模块与ECU单元连接,接受ECU单元的控制指令以及向ECU单元反馈各种信号,储存器单元分别与ECU单元和三比值法编码判断模块连接,电性故障报警单元负责将ECU单元输出的电性故障预警信号进行外部显示处理。
[0032]变压器在运行过程中会受到机械应力、温度、强电场以及水分、氧气等各种因素的影响,绝缘油会在这些因素的作用下发生碳化、裂解以及氧化等各种化学反应,生成氢气、低分子烃类化合物、油泥、某些氧化物以及碳氢聚合物(X蜡),这就是变压器绝缘油劣化与老化现象。在正常情况下,绝缘油只生成很少量的一些气体,这些气体的含量也通常会保持在国标规定值以内。当变压器发生内部潜伏性故障时,故障点释放的能量会加速绝缘材料的分解产气,可能导致气体浓度超过极限值,因此可以通过气体的浓度来大致判断变压器状态是否正常。规定变压器油中溶解气体浓度极限值如表所示。
[0033]表变压器油中气体组分浓度极限值(uL/L)
[0034]

【权利要求】
1.一种输电变压器电性故障检测系统,包括以下步骤: 步骤1:首先启动预警操作步骤,设置i值、K值以及计数器N清零,其中i = 1,为整数,K < 6,优选为3,在组分浓度检测模块中检测每个气体组分的浓度得到各个浓度值Di,依次判断各个气体组分的浓度值是否超出了各自的极限值D1,一旦对应的气体组分超出极限值,则进行计数器N的加I操作,当计数器N大于等于K时,即超出极限值的气体组分数量超过K时,则启动进入检测工作; 步骤2:进入检测工作之后,检测得出特征气体的组分量,当各组分量满足(C2H2+H2)/CnHn ^ A的条件时,则表明存在电性故障可能性,假如不满足(C2H2+H2)/CnHn ^ A的条件时,有可能存在热性故障可能性,则启动热性故障判断及检测过程;满足上述条件会启动电性故障的报警,提示进行电性故障诊断; 步骤3:基于是否满足条件(C0+C02)/CnHn ^ B来判断是否进入二次检测判断法还是进入三比值法来进行故障检测,当满足条件(C0+C02)/CnHn ^ B时,表明此时有过量的固体绝缘类故障所产生的二氧化碳(C02)以及一氧化碳(CO),此时需要选择使用二次检测判断法,假如不满足(C0+C02)/CnHn≥B,则表明并未发生过量的固体绝缘类故障,则可以继续使用三比值法。 步骤4:上述二次检测判断法的具体判断过程如下: 1).当满足(C2H2+H2)/ (H2+CnHn) > Vl且H2/CnHn > V2时,表示变压器可能存在高能电弧放电故障,此时需要进行二次检测上述组分含量进行进一步判断,而二次检测之前需要延迟t时间,假如 仍然满足(C2H2+H2) / (H2+CnHn) > Vl且H2/CnHn > V2,此时表明存在高能电弧放电故障; 2).当满足CnHn/(H2+CnHn)< V3且H2/CnHn > V4时,表示变压器可能存在火花放电故障,此时需要进行二次检测上述组分含量进行进一步判断,而二次检测之前需要延迟t时间,假如仍然满足CnHn/(H2+CnHn) < V3且H2/CnHn > V4,此时表明存在火花放电故障; 3).当满足CH4/CnHn> V5且H2+C2H2/CnHn > V6时,表示变压器可能存在局部放电故障,此时需要进行二次检测上述组分含量进行进一步判断,而二次检测之前需要延迟t时间,假如仍然满足CH4/CnHn > V5且H2+C2H2/CnHn > V6,此时表明存在局部放电故障; 上式中,H2,CH4,C2H4,C2H6,C2H2,CO, C02来分别表示各个组分量,总烃含量用CnHn表示,A代表用来判断是否存在热性故障的第一阈值,B代表用来判断是否存在固体绝缘类故障的第二阈值,VI,V2,V3,V4,V5,V6分别代表相关经验值或设置阈值。
2.根据权利要求1的输电变压器电性故障检测系统,其特征在于,每个气体组分包括H2, CH4, C2H4, C2H6, C2H2,总烃。
3.根据权利要求1的输电变压器电性故障检测系统,其特征在于,通常情况下,K可设置为K≤6,优选为3。
4.根据权利要求1的输电变压器电性故障检测方法,其特征在于,A= 70-85%, B =15-30%, Vl = 55-85%, V2 = 42-74%, V3 = 35-55%, V4 = 35-90%, V5 = 72-90%, V6=80-90%。
【文档编号】G01R31/00GK104076231SQ201410341278
【公开日】2014年10月1日 申请日期:2014年7月16日 优先权日:2014年7月16日
【发明者】胡小青 申请人:胡小青
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1