一种水平定向钻穿越冲击钻具性能测试装置及其测试方法与流程

文档序号:12783924阅读:580来源:国知局
一种水平定向钻穿越冲击钻具性能测试装置及其测试方法与流程

本发明涉及液动冲击钻具性能测试领域,特别涉及一种水平定向钻穿越冲击钻具性能测试装置及其测试方法。



背景技术:

目前,液动冲击钻具性能试验主要包括冲击功测量、冲击频率标定、工作流量以及额定工作压力等参数的测量,其中最重要的即为冲击功测试。常见的测试方法主要包括冲击速度法与动力学法。冲击速度法分为触点法、电磁感应法和高速摄像法等,而动力学法测冲击功包括应力波法与冲击力法等。

在实现本发明的过程中,发明人发现现有技术至少存在以下问题:

冲击钻具性能参数常规测试方法,大部分为接触式测试系统,如触点法、应力波法与冲击力法测冲击功均为冲击体与被冲击体直接接触测量,导致测试装置必须内置于冲击钻具系统内,增加了传感器布置难度及测试装置设计难度,同时降低了测试精度。

而电磁感应法和高速摄像法虽然为非接触测量法,但是需要破坏冲击钻具结构,同时测试数据精确度难以控制,易导致试验系统的破坏,更新维护频率较高。而且此类冲击功测试方法都有自身的局限性,同样面临传感器布置难度高,数据难于采集等问题,不能准确测量冲击功参数,或者测试装置受钻具结构的影响而不能稳定工作,导致测试结果难于获得,测试过程十分复杂。由于测试装置结构的复杂性亦增加了设备的维护保养难度及成本。



技术实现要素:

为了解决现有技术的问题,本发明实施例提供了一种水平定向钻穿越冲击钻具性能测试装置及其测试方法。可提高冲击钻具性能参数测试的精确度和实用性,降低试验测试装置结构的复杂性,便于快速、高效、稳定地测试水平定向钻穿越冲击钻具性能参数。所述技术方案如下:

一方面,提供了一种水平定向钻穿越冲击钻具性能测试装置,用以测试水平定向钻穿越冲击钻具的冲击功性能、冲击力性能及冲击频率性能,所述测试装置至少包括:锁紧环、冲击钻具、液压调节支架、压电石英传感器、运动连杆、支座、传感器紧固套、固定支架、托盘、感应钢板、电涡流位移传感器、横梁、试验砧子及数据采集系统与计算机。

所述托盘设置在支座顶部通过螺栓联接,托盘一侧设置有排液管;所述支座的空腔内设置有传感器紧固套,所述电涡流位移传感器设置在传感器紧固套顶部并通过导线与传感器紧固套内壁连接。

所述运动连杆下部穿过试验砧子并与感应钢板连接,上部与冲击钻具内的冲锤螺纹联接。

所述液压调节支架和固定支架分别设置在支座的两侧,冲击钻具上部通过锁紧环固定在两支架上部设置的横梁上。

所述冲击钻具顶部设置有进液管,冲击钻具底部与设置在托盘内的压电石英传感器感应接触。

所述冲击钻具的实际运动轨迹通过运动连杆传递至感应钢板,电涡流位移传感器通过感应钢板发射与接收信号,将冲锤运动位移数据采集到计算机分析计算。

所述托盘上部a处为压电石英传感器安置腔;传感器紧固套的内腔b处为运动连杆及感应钢板安置腔,c处为电涡流位移传感器安置孔;支座内腔下部d处为传感器的线路布置腔。

所述试验砧子为滑动密封砧子,至少包括进液通道、螺旋密封槽、运动连杆导向孔、砧子本体、密封槽、排液通道、砧子丝堵、运动连杆密封槽、中心通孔。

所述砧子本体内部设置有中心通孔,所述中心通孔上部连通进液通道及运动连杆导向孔,下部一侧设置有排液通道,底部设置有砧子丝堵,所述砧子丝堵中部设置有运动连杆密封槽,所述砧子本体外壁上部设置有螺旋环形密封槽,下部凸台处设置有矩形密封槽。

另一方面,提供了一种水平定向钻穿越冲击钻具性能测试方法,为非接触测量法,以水平定向钻穿越冲击钻具性能测试装置中的电涡流位移传感器测试冲击钻具内冲锤在运动行程末端的冲击速度,实现对水平定向钻穿越冲击钻具的 冲击功测试、冲击力测试及冲击频率参数测试;所述测试方法至少包括:1)试验台搭建、2)传感器安装、3)冲击钻具固定、4)高低压管汇线路连接、5)动力介质及设备连接、6)测试系统调试、7)冲击钻具性能参数测试工艺步骤,其中:

1)试验台搭建

步骤1,将运动连杆与冲击钻具内的冲锤进行螺纹紧固联接;

步骤2,将托盘与试验砧子及冲击钻具固联为整体,再将感应钢板与运动连杆连接;

步骤3,将传感器紧固套固定在支座内腔底面;将运动连杆及感应钢板安装在b处传感器紧固套的安置腔;

2)传感器安装

步骤1,将压电石英传感器放置于试验砧子上端面,并采用嵌套方式固定在托盘的a处压电石英传感器安置腔内;将电涡流位移传感器固定在c处电涡流位移传感器安置孔;

步骤2,支座内腔下部d处为传感器的线路布置腔,布置相关电路的导线;

3)冲击钻具固定

步骤1,将装配有冲击钻具的整套测试装置竖直放置于支座上;

步骤2,安装固定支架,通过固定支架及液压调节支架将冲击钻具进行竖向定位;

步骤3,用锁紧环固定冲击钻具;

步骤4,连接检测线路,并进行试验前线路、传感器的检验,保证信号采集通道流畅;

4)高低压管汇线路连接

步骤1,安装与冲击钻具性能测试相关的管汇、泵站、泥浆池、稳压罐室内测试用附属设备;

步骤2,将现有泥浆泵、稳压罐、进液管与冲击钻具性能测试装置依次采用密封连接;

5)动力介质及设备连接

步骤1,调节好电涡流位移传感器与感应钢板的距离后,将电涡流位移传感器各测试线路与数据采集系统及计算机连接;

步骤2,安装完毕后,连接泵车并检查各处连接的可靠性与密封性;

步骤3,将泥浆高速泵入冲击钻具内驱动其正常工作;

6)测试系统调试

步骤1,测量传感器紧固套底端与感应钢板下端面的距离,根据测试得到的距离值调节电涡流位移传感器与感应钢板的距离,其距离值应在传感器量程1mm~4mm范围内;

步骤2,低排量开泵,检查试验样机是否满足试验要求,若不能满足,应立即停止试验,并排查原因;

7)冲击钻具性能参数测试

步骤1,按照试验设计排量要求开泵,同时监测泵量变化情况,通过压电石英传感器将冲锤对试验砧子的冲击力进行采集,压电石英传感器受力后产生一个与之匹配的电信号,经放大后传递给数据采集系统,显示于计算机上;

步骤2,通过电涡流位移传感器采集冲击钻具内冲锤在一个运动周期内的行程末端1mm距离内的时间,再通过位移与时间的比值确定其冲击末速度;

步骤3,通过测试冲击速度或冲击力的变化周期,根据采集到的运动连杆的位移运动曲线及冲击力变化曲线,通过计算机及频谱分析法计算获取冲击钻具的冲击功与工作频率;

步骤4,按照试验设计调整泵量,观察冲击钻具工作性能变化,并记录相应泵量条件下水平定向钻穿越冲击钻具的性能参数,进行测试数据存储;

步骤5,重复6)测试系统调试、7)冲击钻具性能参数测试,记录各泵量条件下冲击钻具的性能参数;

步骤6,拆卸测试装置,拆分管汇及相关设备,清理场地,试验结束;并做好维护与保养,以便开展冲击钻具性能参数重复测试。

本发明实施例提供的技术方案带来的有益效果是:

1、根据冲击钻具性能测试基本原理,结合先进的力与电传感技术,通过以电涡流效应为原理的电涡流位移传感器非接触测试装置,更加集成化和实用化,测试不受环境因素限制,在液体条件下亦能正常工作,长期工作可靠性好,灵敏度高,能够有效减少冲击钻具对测试设备振动的影响,降低环境因素对测试结果的干扰,增加了测试结果的精确度;

2、测试装置测试分辨率高,能够准确测量冲锤在冲击行程末端1mm范围内 任意点的冲击速度,测量范围宽,减小了测试冲击末速度与实际值的误差,进而增加了冲击末速度的测试精度;

3、无需破坏水平定向钻穿越液动冲击钻具原有结构,即可测试不同型号冲击钻具在不同工作流量条件下的冲击功、频率、压力损耗等性能参数,且测试结果与实际数值误差较小,能够代表冲击钻具的真实性能指标;

4、可提高冲击钻具性能参数测试的精确度和实用性,降低试验测试装置结构的复杂性,便于快速、高效、稳定地测试水平定向钻穿越冲击钻具性能参数;

5、测试装置结构简单,安装拆卸方便,易于维护,测试过程中冲击钻具工作参数、运动距离可以任意精确调节,适用范围广泛,能够满足外径小于203.2mm的所有液动冲击钻具的冲击力、冲击功、冲击频率相关性能参数测试要求。

附图说明

为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1是本发明实施例提供的水平定向钻穿越冲击钻具性能测试装置结构示意图;

图2是本发明实施例提供的图1中局部结构示意图;

图3是本发明实施例提供的图2的俯视图;

图4是本发明实施例提供的水平定向钻穿越冲击钻具试验砧子结构示意图;

图5是本发明实施例提供的水平定向钻穿越冲击钻具性能测试方法流程框图。

图中各符号表示含义如下:

1锁紧环;2冲击钻具;3液压调节支架;4压电石英传感器;5运动连杆;6排液管;

7支座,7.1底盘;

8传感器紧固套;9进液管;10固定支架;

11托盘,11.1扣边;

12感应钢板;13电涡流位移传感器;14横梁;

15试验砧子,15.1进液通道,15.2螺旋密封槽,15.3运动连杆导向孔,15.4砧子本体,15.5密封槽,15.6排液通道,15.7砧子丝堵,15.8运动连杆密封槽,15.9中心通孔;

a压电石英传感器安置腔;b运动连杆及感应钢板安置腔;c电涡流位移传感器安置孔;d传感器线路布置腔。

具体实施方式

为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。

实施例一

参见图1所示,本发明实施例提供了一种水平定向钻穿越冲击钻具性能测试装置,用以测试水平定向钻穿越冲击钻具的冲击功性能、冲击力性能及冲击频率性能参数。该装置至少包括:锁紧环1、冲击钻具2、液压调节支架3、压电石英传感器4、运动连杆5、排液管6、支座7、传感器紧固套8、进液管9、固定支架10、托盘11、感应钢板12、电涡流位移传感器13、横梁14、试验砧子15等零部件及数据采集系统与计算机。

具体地,所述支座7为空腔圆柱体,底部延伸出圆形底盘7.1,置于半地下;托盘11底部带有扣边11.1,扣在支座7顶部并通过螺栓联接,托盘11一侧设置有排液管6;支座7的空腔内设置有传感器紧固套8,传感器紧固套8底部固联在底盘7.1上,传感器紧固套8顶部设置有电涡流位移传感器13,电涡流位移传感器13通过导线与传感器紧固套8内壁连接;运动连杆5底部设置有感应钢板12,上部伸入托盘11的中心孔并与冲击钻具2内的冲锤螺纹联接;液压调节支架3和固定支架10分别设置在支座7的两侧并与地面固定,通过液压驱动可调节高度,两支架上部设置有横梁14,冲击钻具2上部通过锁紧环1固定在横梁14上;冲击钻具2顶部设置有进液管9,冲击钻具2底部与设置在托盘11内的压电石英传感器4感应接触;运动连杆5穿过试验砧子15后与感应钢板12连接;所述冲击钻具2的实际运动轨迹通过运动连杆5传递至感应钢板12,电涡流位移传感器13通过感应钢板12发射与接收信号,经电涡流位移传感器13感应后将冲锤运动位移数据采集到计算机并分析计算,进而获得冲击功与工作频率。

同时参见图2、图3所示,所述传感器紧固套8、托盘11及支座7均为螺纹联接,紧固可靠;由于设置了传感器紧固套8,便于任意调节电涡流位移传感器13与感应钢板12的距离,增加了水平定向钻穿越冲击钻具性能参数的测试范围,有助于提高冲击钻具冲击功测试的精确性;托盘11可限制冲击钻具2径向位移,支座7承担冲击钻具2工作时产生的竖向冲击力。托盘11上部a处为压电石英传感器4安置腔;传感器紧固套8的内腔b处为运动连杆5及感应钢板12安置腔,c处为电涡流位移传感器13安置孔;支座7内腔下部d处为传感器的线路布置腔。

同时参见图4所示,所述试验砧子15是水平定向钻穿越冲击钻具性能参数测试装置中的试验用砧子,为滑动密封砧子,用以保证运动连杆5能够顺利通过冲击钻具砧子而不产生卡阻,同时满足液动冲击钻具工作时的密封要求。该新型结构的试验砧子15至少包括进液通道15.1、螺旋密封槽15.2、运动连杆导向孔15.3、砧子本体15.4、密封槽15.5、排液通道15.6、砧子丝堵15.7、运动连杆密封槽15.8、中心通孔15.9等;所述砧子本体15.4为凸字型结构,其内部设置有中心通孔15.9,所述中心通孔15.9上部连通进液通道15.1及倾斜设置的两道运动连杆导向孔15.3,下部一侧设置有排液通道15.6,底部设置有砧子丝堵15.7,砧子丝堵15.7中部设置有运动连杆密封槽15.8,砧子丝堵15.7不仅起到密封作用,在运动连杆5运动过程中还能起到导向作用,能够提高冲击钻具2冲击功及工作频率的测试精度;砧子本体15.4外壁上部设置有螺旋环形密封槽15.2,起密封作用,下部凸台处设置有矩形密封槽15.5,起二次密封作用;这种双重密封结构可保证工作流体在压力作用下很难发生泄漏。

本发明实施例的工作原理:水平定向钻穿越冲击钻具性能测试装置正常工作后,冲锤在钻具系统内的运动轨迹被运动连杆5及感应钢板12传递至钻具外,此时冲锤冲击试验砧子15,压电石英传感器4采集冲击钻具2的冲击力,同时电涡流位移传感器13采集运动连杆5的运动位移轨迹;采集到的数据经采集系统及计算机的分析计算后,运动连杆5的冲击末速度即可获得,表明水平定向钻穿越冲击钻具的冲击功测试完成。

实施例二

参见图5所示,本发明实施例提供了一种水平定向钻穿越冲击钻具性能测试方法,为非接触测量法,以水平定向钻穿越冲击钻具性能测试装置中的电涡 流位移传感器13测试冲击钻具2内冲锤在运动行程末端的冲击速度,实现对水平定向钻穿越冲击钻具2的冲击功测试、冲击力测试及冲击频率参数测试。以钻具外径为203.2mm,工作流量为1500L/s的水平定向钻穿越液动冲击钻具为例,所述测试方法至少包括:1)试验台搭建、2)传感器安装、3)冲击钻具固定、4)高低压管汇线路连接、5)动力介质及设备连接、6)测试系统调试、7)冲击钻具性能参数测试等主要工艺步骤,其中:

1)试验台搭建

步骤1,将运动连杆5与冲击钻具2内的冲锤进行螺纹紧固联接;

步骤2,将托盘11与试验砧子15及冲击钻具2固联成为整体,再将感应钢板12与运动连杆5连接;

步骤3,将传感器紧固套8固定在支座7内腔底面;将运动连杆5及感应钢板12安装在b处传感器紧固套8的安置腔;

2)传感器安装

步骤1,将压电石英传感器4放置于试验砧子15上端面,且冲锤与压电石英传感器4垂直正向接触,以保证冲锤运动冲击力全部传递于压电石英传感器4上,并采用嵌套方式固定在托盘11的a处压电石英传感器4安置腔内,其上盖板应高于托盘11高度,保证冲击力能够全部传递于压电石英传感器4的上表面,将电涡流位移传感器13使用M14×1.5mm的螺栓固定在c处电涡流位移传感器13安置孔;

步骤2,支座7内腔下部d处是传感器的线路布置腔,用于布置相关电路的导线;

3)冲击钻具固定

步骤1,将装配有冲击钻具2的整套测试装置竖直放置于支座7上;

步骤2,安装固定支架10,依靠固定支架10及液压调节支架3将冲击钻具2进行竖向定位,保证冲击钻具2冲击过程中固定支座的零位移;

步骤3,用锁紧环1固定住冲击钻具2;

步骤4,测试装置及固定支架10安装后,连接检测线路,并进行试验前线路、传感器等检验,保证信号采集通道流畅,系统稳定;

4)高低压管汇线路连接

步骤1,安装与冲击钻具2性能测试相关的管汇、泵站、泥浆池、稳压罐等 室内测试用附属设备,均为现有设备;

步骤2,将现有泥浆泵、稳压罐、进液管9与冲击钻具性能测试装置依次采用密封连接;

5)动力介质及设备连接

步骤1,调节好电涡流位移传感器13与感应钢板12的距离后,将电涡流位移传感器13各测试线路与数据采集系统及计算机连接;

步骤2,安装完毕后,连接泵车并检查各处连接的可靠性与密封性;

步骤3,将泥浆高速泵入冲击钻具2内驱动其正常工作;

6)测试系统调试

步骤1,测量传感器紧固套8底端与感应钢板12下端面的距离,根据测试得到的距离值调节电涡流位移传感器13与感应钢板12的距离,以保证电涡流位移传感器13在测试量程范围之内,即电涡流位移传感器13与感应钢板12的距离范围不宜过大或过小,其距离值应为传感器量程1mm~4mm范围内;

步骤2,低排量开泵,检查试验样机是否满足试验要求,若不能满足,应立即停止试验,并排查原因;

7)冲击钻具性能参数测试

步骤1,按照试验设计排量要求开泵,同时监测泵量变化情况,通过压电石英传感器4将冲锤对试验砧子15的冲击力进行采集,压电石英传感器4受力作用后会发生形变,并相应的产生一个与之匹配的电信号,经放大后传递给数据采集系统,最后显示于计算机上;

步骤2,通过电涡流位移传感器13采集冲击钻具2内冲锤在一个运动周期内的行程末端1mm距离内的时间,再通过位移与时间的比值确定其冲击末速度;冲锤运动通过运动连杆5将其引出冲击钻具2外,运动连杆5的运动代表冲锤实际的运动情况,能够真实测试冲击钻具2内冲锤的运动特性;

步骤3,通过测试冲击速度或冲击力的变化周期,根据采集到的运动连杆5的位移运动曲线以及冲击力变化曲线,通过计算机及频谱分析法计算获取冲击钻具2的冲击功与工作频率;工作频率的测试为特定工作泵量条件下冲锤往复运动的周期频率,能够准确测试冲击钻具2在正常工作过程中的运动频率;

步骤4,按照试验设计调整泵量,观察冲击钻具2工作性能变化,并记录相应泵量条件下水平定向钻穿越冲击钻具2的性能参数,进行测试数据存储;

步骤5,重复6)测试系统调试、7)冲击钻具性能参数测试,记录各泵量条件下冲击钻具2的性能参数,保证性能参数测试的精确度;

步骤6,拆卸测试装置,拆分管汇及相关设备,清理场地,试验结束;并做好维护与保养,以便开展冲击钻具2性能参数重复测试。

此外,本发明实施例还具有如下优点:

1、将法拉第电磁感应原理应用在测试方法中,亦是一种利用电涡流效应进行测速的新方法,与现有测试方法相比,原理更先进,测试精度更高,降低测试成本,适用于水平定向钻穿越冲击钻具性能参数的室内测试与现场测试;

2、该测试方法具有高度重复性,试验结果保真性强,与冲击钻具实际运动位移最接近,因此测试得到的冲击功及工作频率更符合真实情况;

3、可满足采集测试数据量大、测试性能精度高等性能试验的要求,保证测试性能值的可靠性。

以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1