天线设备及操作天线设备的方法与流程

文档序号:14958217发布日期:2018-07-17 23:59阅读:223来源:国知局

本发明涉及测量技术领域。特别地,本发明涉及借助电磁波的填充物位测量。



背景技术:

拓扑检测用填充物位测量装置可用于确定容器中的填充材料或散装材料的填充物位。这种测量装置通过电磁波来采样填充材料表面和/或散装材料表面,并且在假定填充材料下方的表面区域是已知的情况下,这种测量装置还能够利用从采样获得的与填充材料和/或散装材料的三维表面拓扑相关的信息,以获得填充材料的体积,并且/或者在密度已知的情况下获得质量或其它能够从中获得的变量。对于采样,来自电磁波的波束在填充材料或散装材料上方被引导,并且在各种角度下监测并分析反射行为。

文献de102007039397b3披露了一种用于操作具有多个发射器和多个接收器的天线组的方法以及相关设备。文献wo2015/052699a1涉及一种通过多个声学发射器/接收器阵列来分析容器的内容物的方法。文献wo2015/120885a1涉及测量设备及用于检测目标的特性的方法。



技术实现要素:

根据本发明的一个方面,披露了天线设备、填充物位测量装置和用于操作天线设备的方法。

可能需要促进填充物位的有效测量。

独立权利要求限定了本发明的主题。从属权利要求和下面的说明给出了本发明的其它实施例。

根据本发明的一个方面,说明了一种天线设备,该天线设备包括控制单元、分析单元、至少一个第一发射器单元以及至少一个第一接收器单元。控制单元被配置成通过至少一个第一发射器单元发送传输信号,并且分析单元通过至少一个第一接收器单元接收至少一个接收信号。另外,控制单元被配置成操作至少一个第一发射器单元,使得能够通过分析单元根据接收的至少一个接收信号确定目标的表面的轮廓。在一个示例中,控制单元和分析单元能够链接,以便控制彼此。在另一示例中,控制单元和分析单元能够彼此独立地操作。分析单元被进一步配置成识别在检测目标的表面的轮廓时的错误,并在识别出错误时驱动控制单元和/或发射器单元,使得分析单元确定目标的表面距发射器单元和/或接收器单元的距离,而不确定目标的表面的轮廓。可以在可指定单个空间方向(例如,大体上垂直于目标的表面的方向和/或在故障的情况下天线设备所困住的方向)上测量距离。在错误的情况下,对于距离的测量来说额外地或替代地,也可以输出用于指示不良的测量质量或显示缺陷的错误讯息。可以在显示器上输出错误讯息,或者可以通过扬声器声学地输出错误讯息。

换句话说,被配置成检测目标的表面或表面的拓扑的拓扑测量设备能够在测量设备中的错误的情况下进行切换,以在大体上仅单个空间方向上执行纯粹的距离测量。错误可以是机械故障或可以是测量质量的下降。例如,在第一操作模式中通过确定表面的轮廓来确定填充物位的测量方法能够切换到第二操作模式,在第二操作模式中,通过在可指定位置处的距离测量来确定填充物位。这可以是指从根据多个距离测量来确定表面的轮廓切换到根据单个距离测量确定距离。因而,当发生错误时,在从拓扑测量到距离测量的转换之后,通过距离测量来确定填充物位,由此可减小用于每个填充物位测量值的测量数量。因而,为了计算填充物位,也可以进行从接收至少两个接收信号到接收单个接收信号的转换。

根据本发明的另一方面,提供了一种天线设备,该天线设备包括控制单元、分析单元、至少一个第一发射器单元以及至少一个第一接收器单元。控制单元被配置成通过至少一个发射器单元发送例如为电磁波的传输信号。分析单元被配置成通过至少一个第一接收器单元接收至少两个接收信号。至少一个第一接收器单元和/或多个接收器单元能够大体上同时地或以延迟的方式接收接收信号。

分析单元被配置成根据至少两个接收信号来针对至少两个可指定空间方向确定至少两个回波曲线,以便检测目标的表面。为了检测目标的表面,可以例如通过确定距表面上的各种点的多个距离并根据这些距离来确定测量值来确定目标的表面轮廓的测量结果。分析单元被进一步配置成根据针对至少两个不同空间角度的接收信号的测量结果来确定至少两个接收信号的质量度量。质量度量可以例如是接收信号的强度或接收信号的信噪比。如果质量度量偏离质量度量的可指定阈值,即如果质量度量的阈值被超过或没有得到满足,则分析单元也被配置成针对至少两个接收信号指示发射器单元增加传输信号的能量并针对单个可指定空间方向确定单个回波曲线。

换句话说,可以确定拓扑测量的质量或目标表面轮廓测量的质量。如果测量的质量没有对应于可指定值,则拓扑测量切换到纯粹的填充物位测量。对于拓扑测量,在天线设备和/或填充物位测量装置中并且特别地在分析单元中监测针对不同的空间方向接收的并且/或者在传感器中计算的回波曲线,而在纯粹的填充物位测量的故障的情况下,根据单个空间方向接收并且/或者计算仅一个回波曲线,以便获得测量值,例如填充物位。单个空间方向可以以大体上垂直于填充物位表面的方式延伸。然而,也可以对单个空间方向进行选择,使得与其它方向相比,在该方向上接收的信号的能量为最大值。为了在一个空间方向上确定接收信号,可以使用在两个空间方向上聚焦的传输信号和相应地聚焦的接收信号。因而,可以使用具有低散射度的信号。可以将透镜或喇叭形天线用于相应的聚集。由设定在相应的相位角度处的多个模拟传输信号的针对性叠加实现的模拟波束成形也可以确保合适的聚焦。

根据本发明的另一方面,提供了一种用于操作天线设备的方法,该方法包括:通过至少一个第一发射器单元发送传输信号,并通过至少一个第一接收器单元接收至少两个接收信号。该方法进一步根据接收的至少两个接收信号确定目标的表面的轮廓,并识别在确定目标的表面的轮廓时出现的错误。响应于识别出错误的发生,该方法驱动控制单元,使得分析单元确定目标的表面距发射器单元和/或接收器单元的距离,而不确定目标的表面的轮廓。

在一个示例中,提供了一种用于操作天线设备的方法,该方法包括:通过至少一个发射器单元发送传输信号,并通过至少一个接收器单元接收至少两个接收信号。该方法还根据至少两个接收信号来针对至少两个可指定空间方向确定至少两个回波曲线,以便检测目标的表面。此外,该方法确定至少两个接收信号的质量度量,并增加传输信号和/或接收信号的能量;如果质量度量偏离针对至少两个接收信号的质量度量的可指定阈值,该方法针对单个可指定空间方向确定单个回波曲线。

在另一示例中,在通过物理地调节包括单个发射器单元和单个接收器单元的调节单元进行机械采样的情况下,可以针对不同的空间方向在时间上连续地发送和/或接收传输信号和(由于目标表面上的反射而从传输信号产生的)相关的接收信号。替代地或额外地,可以使用天线阵列,天线阵列使用多个发射器单元和/或多个接收器单元,以便能够通过数字波束成形(dbf)来采样目标表面。数字波束成形包括借助数学方法的采样。

根据本发明的另一方面,提供了一种包括根据本发明的天线设备的填充物位测量装置。填充物位测量装置可以包括处理器。例如,可以提供具有程序代码和程序元件的计算机可读存储介质。该代码/元件在由处理器执行时实施用于操作天线设备的方法。

根据本发明的另一方面,天线设备包括至少一个第二接收器单元。此外,分析单元被配置成通过至少一个第二接收器单元和至少一个第二接收器单元中的每者来接收至少两个接收信号中的一者;并且,如果质量度量偏离质量度量的可指定阈值,分析单元可以发送额外传输信号。在一个示例中,通过至少一个第一接收单元和至少一个第二接收单元中的一者进行发送。例如,分析单元还可以指示控制单元发送该额外信号。为了用于发送信号,接收器单元可以被设计成发射器/接收器单元。分析单元可以使用发射器单元来触发额外信号的发送。通过发送额外传输信号,可以导致两个信号重叠,从而增加传输信号的能量。接着,然而,分析单元针对单个可指定空间方向确定大体上仅单个回波曲线。

容器内的污垢可能影响信号质量。通过增加能量能够确定填充物位而不管污垢如何,且能够允许目标的表面轮廓的有限确定。在另一示例中,可以将高能量测量用于可信性测量,以验证诸如拓扑测量等另一测量。

根据本发明的其它方面,可以使用至少一个第二或多个发射器单元,以方便使用时分复用模式、频分复用模式和/或码分复用模式,且可以以这种模式操作。控制单元可以根据对应于时分复用模式的时序模式来激活发射器单元,或者该单元可以通过对应的频率信号或编码来调制传输信号。此外,额外地或替代地,可以提供能够机械地调节空间角度的机械调节单元,以根据多个空间方向确定回波曲线。另外,不仅能够通过发送额外传输信号,而且还能够通过额外的发射器单元、接收器单元和/或发射器/接收器单元来增加信号能量;还可以提供能量调节单元,在仅在单个空间方向上执行填充物位测量的情况下,能量调节单元增加传输能量。通过彼此间以小于或等于半个波长的距离来布置发射器元件、接收器元件和/或发射器/接收器元件,可以在信号计算期间产生好的结果。通过时分复用模式,也可以借助由实际阵列形成的虚拟阵列来模拟元件之间的距离的人为减小。虚拟阵列由根据时分复用方法进行操作的发射器单元和接收器单元的位置形成,这些位置在数学上相对于时序模式进行偏移,使得时间顺序上的操作作为虚拟天线的操作出现在一个时间点上。通过将天线设备、填充物位测量装置、发射器单元和/或分析单元设计为双线装置,可以经由双线线路来供应功率,且也可以经由该双线线路来传输数据。

根据本发明的另一方面,天线设备包括调节单元,以用于机械地调节至少一个第一发射器单元和/或至少一个接收器单元,以通过机械地调节至少一个第一发射器单元和/或至少一个接收器单元来确定表面目标的轮廓。在一个示例中,控制单元可连接到能够确定机械调节后的天线设备的位置的角度检测单元或角度检测部件。控制单元还可以被配置成使得接收的接收信号以及特别地从接收信号获得回波曲线被关联到位置,以确定拓扑。在识别出错误时,分析单元还被配置成将调节单元刚性地固定到可指定位置,并且/或者如果错误是调节单元不再移动的情况(例如,电机故障),分析单元被配置成确定天线设备的位置。在错误的情况下,分析单元还被配置成输出错误讯息并且/或者在该刚性地固定的位置处确定目标表面距发射器单元和/或接收器单元的距离。在确定出目标表面距发射器单元和/或接收器单元的距离时,可以使用确定的天线设备的位置来补偿相对于目标表面的垂直位置的偏离。

附图说明

下面将参照附图说明本发明的另外的示例性实施例。

图1示出了根据本发明的示例性实施例的填充物位测量装置。

图2是根据本发明的示例性实施例的线性抛物线天线设备。

图3是根据本发明的示例性实施例的二维天线阵列的立体图。

图4是根据本发明的示例性实施例的包括线性地布置的元件的天线设备的平面图。

图5是根据本发明的示例性实施例的用于操作天线设备的方法的流程图。

具体实施方式

附图中的示图是示意性地,并且没有按照比例。在下面的图1至图5的说明中,使用相同的附图标记来表示相同或等同的元件。

在不失一般性的情况下,下面的附图的说明大体上涉及线性天线201。然而,这些说明和原理也相应地适用于二维阵列天线203。

图1示出了根据本发明的示例性实施例的填充物位测量装置105或拓扑检测用雷达测量装置105。测量装置105或现场装置105(特别是填充物位测量装置105)能够从不同的角度范围101、102、103或主接收方向101、102、103检测回波信号或回波曲线。填充物位测量装置105包括控制单元111和分析单元123,并经由双线连接部130供电。双线连接部130也能够用于传输数据,例如以便将确定的填充物位传送到中央控制室(未在图1中示出)。角度范围101、102、103被视为是可调节的主波束方向或可调节的主接收方向的示例。根据天线设备201、203的调节和定向,可以通过图1所示的布置来检测0°至180°的角度范围122。因而,通过旋转天线支架108,能够检测目标104的整个三维表面120。针对在空间方向上确定的每个回波曲线,确定距目标104的表面上的相关点的距离,例如距离散装材料104或填充材料104的距离。通过在数值上积分这些距离值并在假定散装材料104或填充材料104下方的平坦表面106(特别是,平坦容器基底106)的情况下,能够确定散装材料堆107的体积。

为了机械采样,填充物位测量装置105包括具有用于紧固天线201、203或天线设备201、203的天线基座109的天线支架108。天线基座109和天线支架108形成能够被控制单元111定向的调节单元。调节单元109、108能够由电机控制。以此方式,根据安装在天线基座109上的天线设备的类型,能够实现电机控制型平面天线或电机控制型喇叭形天线。根据填充物位测量装置105的设计,天线基座109能够通过使天线支架108围绕旋转轴线旋转并且/或者围绕倾斜角122倾斜来实现安装在天线基座109上的天线设备201、203的主波束方向的机械调节。箭头110表示旋转,且箭头122代表倾斜。

对于机械旋转110和/或倾斜122来说另外或替代地,可以通过数字波束成形方法来补充或代替天线201、203或天线设备201、203的主波束方向101、102、103或主接收方向101、102、103。

如果使用包括至少一个发射器单元和至少两个接收器单元的天线阵列,则每次测量可以检测多个主波束方向和/或主接收方向,且特别地,从这些多个空间方向能够确定多个回波曲线。为了能够采样散装材料104或另一目标104的表面120,在大体上所有的空间方向上从天线设备的发射器单元发送传输信号。通过各向同性辐射体来不变地点亮关注区域。通过分析由天线设备的接收器单元接收的信号,能够在任一期望空间方向101、102、103上确定接收信号。例如,仅通过一次测量就能够在各种角度范围101、102、103中形成接收信号,以便以不同角度范围检测散装材料104的表面120。通过以不同多角度范围检测接收波束,能够在填充材料的表面120上方引导接收信号。使用波束成形方法来检测不同的空间区域,且还能够在不使用机械角度调节122或旋转110的情况下大体上采样散装材料104的表面120。

为了方便数字波束成形,使用了包括多个发射器单元和接收器单元的天线设备201、203,该设备安装在天线支撑件109或天线基座109上。

图2是根据本发明的示例性实施例的线性抛物线天线设备201或线性平面天线设备201。如图2所示,由于发射器单元202和接收器单元205线性地布置成平行于由附图标记210表示的坐标系统210的y轴,天线设备201可被指定为线性阵列201。发射器单元201和接收器单元205的群集可被指定为天线组。发射器元件202或发射器单元202可由控制单元111驱动,并且接收器元件205或接收器单元205可以由分析单元123操作,以便实现期望的波束成形并能够在可指定区域中采样散装材料104的表面120。以与可旋转天线支架108组合的方式,抛物线形槽201或线性阵列201可以安装在天线支撑件109上进行使用。线性阵列201能够在坐标系统210所示的x方向上实现由发射器单元202或天线元件202发射的并且/或者由接收器单元205接收的电磁波的机械聚焦。线性透镜209或线性双曲线部209设置成用于机械聚焦。仅当在分析部件123或分析单元123中已经检测到接收信号之后,通过dbf在坐标系统210的y方向上或在线性方向402上聚焦相应的信号。以此方式,还能够在y方向上进行天线121的主接收方向的针对性控制。作为纯粹的发射器单元202和纯粹的接收器单元205的代替,还可以在相同位置使用能够同时进行发射和接收的发射器/接收器单元207。发射器单元202、204和接收器单元205、206可以由发射器/接收器207代替。各个发射器单元202、204、207和/或接收器单元205、206、207彼此之间相距有距离d0,且在网格上定向。

图3示出了根据本发明的示例性实施例的二维(2d)天线阵列203或2d平面天线设备203。二维天线阵列在如坐标系统210'所示的两个空间方向(例如,x方向和y方向)上具有延伸量。图3示出了天线阵列203上的发射器单元204和接收器单元206的布置。作为纯粹的发射器单元204和纯粹的接收器单元206的替代,在可以在相同位置处使用能够同时进行发射和接收的接收器/发射器单元207。各个发射器单元和/或接收器单元彼此相距有距离d0。在一个示例中,还可以在一个接收器单元和/或发射器单元内实现多个(i个)不同的网格距离di,其中距离di不同于d0。天线阵列203可以与刚性的天线支架108和刚性的天线支撑件109组合地使用。以与静态的天线支架108组合的方式,二维天线阵列203能够实现两个空间方向上的采样,而不管静态布置如何。二维天线阵列203沿着x轴并沿着y轴包括多个发射器单元204/接收器单元206。这些单元布置成关于对称轴250和251对称。发射器单元204、207和接收器单元206、207以网格状方式布置成具有网格间距d0。例如,该网格间距对应于所使用的传输信号的波长的一半,该信号通过控制单元111在各个发射器单元202、204中触发。通过遵循由距离标准规定的距离λ/2,能够降低栅瓣。适当地加载的用于驱动和/或分析二维天线阵列203或线性天线阵列203的程序根据二维数字波束成形方法并根据所使用的天线设计201、203将由接收器单元205、206、207接收的信号进行关联。

出于数字波束成形(dbf)的目的并特别地为了形成虚拟阵列,根据时分复用方法顺序地或先后地触发发射器单元202、204,以便发送传输信号。为了实现数字波束成形,可以使用专门编码的传输信号(例如,正交信号形式),以作为时分复用方法的代替。如果使用编码的传输信号以在各个发射器201、204之间进行区分,特别地在各个发射器位置之间进行区分,能够触发发射器单元202、204以同时进行发射。通过同时触发可以减小测量周期。尽管同时传输,编码能够实现信号源的位置的确定,以便能够在由每个独立发射器单元202、204产生的信号之间进行区分。可以使用时分复用方法和编码二者,以清楚地将接收信号指定至多个发射器单元202、204、207中的特定发射器单元202、204、207。

为了在使用数字波束成形方法时避免不期望的栅瓣,将两个相邻的天线元件202、204、205、206、207之间的物理距离d0选择成不大于(小于或等于)所使用的雷达信号、传输信号和/或接收信号的波长的一半。基于在填充物位测量技术中使用的79ghz的区域中的雷达信号,这种限制将导致大量的天线元件202、205、204、206。

另外,当在时分复用中使用各个发射器元件202、204时,考虑到可用的半导体部件的有限功率,填充物位测量装置105仅以有限的传输功率或传输能量在朝向散装材料104的方向上进行发射。在发射期间不再存在任何的数字波束成形,并且因此,散装材料或目标104的整个表面120必须被发射器单元202、204、207照射或辐射。如果借助这种弱的发射来测量具有弱的反射介质性能的散装材料,则由散装材料104反射的信号可能比较弱,以至于大体上不可能实现检测。

图4是根据本发明的示例性实施例的包括线性地布置的发射器单元202和发射器/接收器单元207的天线设备201或物理阵列201的平面图。使用了发射器/接收器单元207以代替仅能进行接收的纯粹的接收器单元206。根据其驱动,发射器/接收器单元207能够作为发射器单元202进行操作或作为接收器单元205进行操作。因而,天线设备201将由发射器/接收器单元207组成,其中,发射器/接收器单元207的一部分作为发射器单元202进行操作,且另一部分作为接收器单元205进行操作。因此,能够在例如由控制单元111或分析单元123控制的阵列203中以电子的方式改变发射器单元202和接收器单元205或者发射器单元204和接收器单元206的布置。

发射器/接收器单元207和接收器单元205相对于y方向上的参考线402线性地布置在矩形的抛物线槽中。y方向以平行于矩形线性天线的四条边中的长边的方式延伸。在这种情况下,发射器/接收器单元207和接收器单元205定向在与所使用的传输信号的波长有关的网格上。通过网格可以确定发射器/接收器单元207和接收器单元205的可指定位置。两个相邻的元件之间(例如,接收器单元204、206之间,发射器单元202、205之间和/或发射器/接收器单元207之间)的距离d0大体上为一个波长或d0=λ,并且因此不满足距离标准。从参考线400上的参考点401开始,前两个接收器单元205关于参考线400对称,且布置在d0/2和–d0/2的位置处并且/或者λ/2和–λ/2的位置处。网格的尺寸为d0/2或λ/2;然而,并非所有的网格位置被元件202、204、205、206、207占据。参考线400是天线设备201的对称轴400。后面两个接收器单元205位于3d0/2和-3d0/2处。再接着后面两个接收器单元位于5d0/2和-5d0/2处,且最外侧的接收器单元205位于7d0/2和-7d0/2处。因此,相邻的接收器元件205相距有固定距离d0或λ。

在从接收器单元205至发射器/接收器单元207的传输的方面,相邻的元件同样相距有距离d0。在可指定位置9d0/2和-9d0/2或者9λ/2和-9λ/2处存在发射器/接收器单元207。最外侧的发射器/接收器单元207位于可指定位置12d0/2和-12d0/2或12λ/2和-12λ/2处,并因而偏离规则结构。

图3中的二维物理阵列203具有对应的规则结构,该阵列在x方向上定向在参考线250上并且在y方向上定向在参考线251上,因而在天线阵列203的表面区域的形心处产生参考点252。

图3和图4示出了在任一参考点401、252处没有布置物理发射器单元202、205、物理接收器单元205、206或物理发射器/接收器单元207。因而,图4包括具有八个接收器单元205和四个发射器/接收器单元207的线性天线阵列。

能够以各种操作模式驱动图4中的天线设备201。例如通过加载的相应程序能够使控制单元111和分析单元123相应地适用于各种操作模式。

第一操作模式可用于驱动多个发射器单元202、207中的仅一个发射器单元,并通过多个接收器单元205中的仅一个接收器单元接收反射后的由该发射器单元202、207发射的作为接收信号的传输信号。在该操作模式中,借助调节单元108、109进行的天线设备的机械调节可以确保从各种空间角度接收接收信号且确保对目标104(未在图4中示出)的表面进行采样。在一个示例中,可以使用由电机控制的喇叭形天线,该天线的喇叭用于定向由发射器单元和/或接收器单元产生的电磁波信号。

在第二操作模式中,调节单元108、109可以是刚性的或者不能够机械地移动,且能够以固定的角度定向。然而,通过发射器单元202、207或多个发射器单元202、207中的至少一者和/或对应数量的发射器/接收器单元207大体上同时地发送传输信号。通过至少两个接收器单元205、207和/或发射器/接收器单元207接收反射的接收信号。分析单元123能够通过应用dbf方法从多个可指定空间方向或者从多个主接收方向101、102、103确定回波曲线。以此方式,能够以数字控制的方式采样目标104的表面。

在第三操作模式中,至少两个发射器单元202、207和/或至少两个发射器/接收器单元可以根据时分复用方法进行操作,使得分析单元能够确定虚拟阵列。为了形成虚拟阵列,分析单元根据至少两个接收器单元205、207、传输序列的时序模式和/或各个发射器元件202、207和接收器元件205、207的相对彼此的位置来分析接收信号。

在第四操作模式中,除了运行第三操作模式之外,还可以在时分复用方法期间的某个时间点处同时激活至少两个发射器单元202、207和/或至少两个发射器/接收器单元,以便模拟额外发射器单元。

无论用于拓扑测量的操作模式如何,使用天线设备201、203的填充物位测量装置105能够被配置成使得在其识别出反射条件的劣化和/或机械部件108、109的劣化时其转换为纯粹的填充物位测量模式。在此情况下,转换为纯粹的填充物位测量模式的时刻可以是事件驱动的或者也可以是时间驱动的,而不管使用的测量周期如何。为了转换为纯粹的填充物位测量模式,如果提供了至少两个发射器单元202、207,则可以增加联合地操作的发射器单元的数量,以便使用更可能多的发射器单元202、207,并增加信号强度、信号功率或信号能量。同时发射的信号可能重叠,使得它们的能量组合。在填充物位测量操作的操作阶段期间,可以同时激活至少两个发射器单元,以便产生传输信号并使所述传输信号被至少两个接收器单元接收,并实现最大反射方向和/或其它方向上的数字波束成形。最大反射可以指多个主接收方向中的使接收信号具有最大接收能量和或最大信噪比的主接收方向。当发射器单元同时进行操作以便增加能量时,数字波束成形可以以如下方式进行:从单个空间方向101、102、103或主接收方向仅确定单个回波曲线。所述单个空间方向101、102、103可以设置成使得其以大体上垂直于目标表面的方式延伸。在另一示例中,单个空间方向101、102、103可以设置成使得其以大体上平行于容器131的壁的方式延伸。在又一示例中,可以对空间方向101、102、103进行选择使得从中能够检测到尽可能大的被反射的传输能量。最初可以通过借助数字波束成形针对多个空间方向101、102、103确定的回波曲线并接着通过针对每个回波曲线确定的最大的反射能量来检测大的反射能量或大的接收能量。这些确定的最大能量值的比较能够实现具有最大反射的方向101、102、103的确定。如果在该具有最大反射的空间方向上确定单个回波曲线,则可以可靠地测量填充物位。该最大反射方向常常是垂直于目标表面的方向。如果从不同角度开始的空间方向是具有最大反射的空间方向,则在测量距离时观察到空间方向101、102、103的相对于目标表面的倾斜,并且在必要时排除或补偿该倾斜。

在按照第一操作模式进行机械采样的情况下,为了确定单个回波曲线,调节单元可以定向天线设备,使得能够大体上以垂直于目标表面的方式和/或以平行于容器壁的方式接收接收信号。天线设备201、203能够刚性地保持该位置,直到质量度量允许其它的目标检测。

如果在电机控制型喇叭形天线的情况下识别出电机故障,通过分析单元产生并输出错误讯息。在可能的情况下,分析单元仍能够将喇叭形天线定位成直接朝向目标表面,以便测距至目标表面的距离。如果不能够提供朝向目标表面的定向,可以对检测目标表面所依照的角度进行补偿,并且/或者可以输出用于表明不能够进行测量或仅能够进行有限测量的警告讯息。

通过在拓扑测量期间从单个空间方向检测回波曲线,在操作拓扑检测用填充物位测量装置105时能够实现良好的s/n比(信噪比)。在激活所有的发射器的情况下或者在以电机驱动的方式定向天线设备的情况下,测量装置至纯粹的填充物位测量操作的时间控制型或事件驱动型切换可用于即使在不良的反射介质或不良的测量条件时改善s/n比,或者可以用于评估可信性

通过该天线设备和该方法,用于数字波束成形并用于检测散装材料的表面拓扑的发射器单元202、204、207和接收器单元205、206、207的布置结构201、203能够用于保持测量的质量度量。如果质量度量偏离可指定阈值或者在错误的情况下,能够同时激活可用的发射器元件中的至少两个发射器元件并且/或者输出错误讯息。能够使用所述同时激活,以便朝向待测量的介质104发射更多的传输能量,并因此特别地在不良反射介质的情况下改善可获得的s/n比。在一个示例中,通过单个空间方向上的填充物位测量能够执行3d测量的可信性评估。

填充物位测量装置的用于检测散装材料表面的拓扑的操作模式可切换到用于以非常高的灵敏度水平且/或以非常高的测量速率执行简单的填充物位测量的操作模式。通过增加传输能量也能够增加灵敏度,为此目的,使用了可以作为控制单元的一部分的能量调节单元。

天线设备的元件202、204、205、206、207的共同优点能够导致具有可信性测量的拓扑/物位测量装置105的紧凑设计,这是因为不必提供两个单独的测量装置,具体地用于固定空间方向的填充物位测量装置和用于检测表面的拓扑测量装置。

作为额外测量,可信性测量可以例如以时间控制的方式根据已经从可指定空间方向确定回波曲线的每个测量周期来执行。在另一示例中,可以以时间控制的方式根据可指定数量的执行测量周期来添加可信性评估,以作为校正和可信性测量。在又一示例中,仅在质量度量已被超过并且/或者在出现错误的情况下,以事件驱动的方式执行可信性测量。为此目的,分析单元定期地监测质量度量和/或调节单元的功能。如果出现错误并且/或者如果借助拓扑测量的填充物位测量的结果以及根据可信性测量获得的结果不同于预先定义的容差阈值或质量度量,或者如果两个测量中的一个测量的指定的质量度量没有得到满足,则拓扑测量装置105或填充物位测量装置105可以产生警告讯息。拓扑测量可以通过借助时分复用方法和/或至少两个发射器单元的额外激活来进行。可信性测量可以通过正常的散装材料测量或填充物位测量并同时通过发射器单元的同时激活来进行。

图5是根据本发明的示例性实施例的用于操作天线设备的方法的流程图。用于操作天线设备的方法开始于开始状态s501。在步骤s502中,该方法通过至少一个第一发射器单元发送传输信号,并通过第一接收单元接收至少两个接收信号。该方法进一步根据所接收的至少两个接收信号来确定目标表面的轮廓。在步骤s503中,如果在确定目标表面的轮廓时识别出错误,则驱动控制单元,使得分析单元确定目标表面距发射器单元且/或距接收器单元的距离,而不确定目标表面的轮廓。于是,存在从拓扑测量至纯粹的填充物位测量的切换。该方法终止于步骤s504。

替代地,在步骤s502中,该方法能够通过至少一个发射器单元发送传输信号,并能够以被从目标表面往返的信号传播时间延迟的方式通过至少一个接收器单元接收至少两个接收信号。例如,为了接收两个接收信号,发射器单元在接收操作模式中同时地操作,即作为发射器/接收器单元操作。或者,例如,在机械采样的情况下,使发射器单元和/或接收器单元的位置移动,并发送且新的传输信号,以便获得至少两个接收信号。

如果使用多个发射器单元和多个接收器单元,则可以发送至多对应于可用的发射器单元的数量的多个传输信号。也可以接收至多对应于可用的接收器单元的数量的多个接收信号。此外,针对至少两个可指定的空间方向,根据至少两个接收信号确定出至少两个回波曲线,以便检测目标表面。

在步骤s503中,针对至少两个接收信号确定质量度量,且将该质量度量与可指定阈值或可指定极限值进行比较。如果质量度量偏离该至少两个接收信号的质量度量的该可指定阈值,则增加传输信号的能量,并针对单个可指定空间方向仅确定单个回波曲线。因而,存在从多维拓扑测量值一维测量的切换。例如,存在从多维填充物位测量至一维测量的切换。

另外,应当提到的是,术语“包括”和“具有”没有排除任何其它的元件或步骤,且“一”或“一个”没有排除多个的可能。另外,应当指出的是,参照上述实施例中的一者描述的特征或步骤也可以与上述实施例中的其它特征或步骤组合地使用。权利要求中的附图标记不当视为具有限制效果。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1