一种标定测量整层大气光谱透过率的方法与流程

文档序号:12450390阅读:906来源:国知局
一种标定测量整层大气光谱透过率的方法与流程

本发明涉及一种标定测量整层大气光谱透过率的方法。



背景技术:

整层大气光谱透过率是反映大气光学特性的一个重要参数,在大气辐射、地球资源遥感、环境监测、空间目标监测等应用中具有重要的参考价值。太阳辐射计通过测量太阳直射可以反演得到整层大气光谱透过率,测量原理为:太阳发出的光首先经过滤光片的衰减再经过准直物镜,射入色散元件(光栅),由于色散元件的作用使进入的单束复合光分解为多束单色光,再经过成像物镜按照波长的顺序成像于透镜焦平面上。此时,单束的复合光经过分光系统后就变成了若干个单色光的像。CCD探测器上的像元阵列就可以探测到分波长的光子数,再通过一定的标定方法就可以反演大气参数。正确的标定方法对于获取有意义的大气光学参数是至关重要的。常见的两种标定方法为Langley标定法和标准光源标定。

平常所见的太阳辐射计大部分都是分波段的,通过干涉滤光片获得感兴趣的几个波段上的大气透过率值。当需要获得连续精细的大气光谱透过率特征的时候,例如450-1000nm波段,在此波段内就存在很多气体吸收通道:在0.83μm和0.94μm附近为水汽吸收通道;在0.68μm、0.73μm和0.76μm附近为氧气吸收通道。由于在气体吸收通道不符合Bear-Bouguer-Lambert定律,这时候如果还用Langey标定法的话就会产生误差。一些学者曾经提出对Langley法进行改进。Reagan等人提出用平方根的依赖性来描述940nm水汽通道的水汽吸收。其他人则提出了针对二氧化氮以及氧气等吸收通道建立模型进行定标的改进方法,但是这些模型所引入的假设因子会产生很多的不确定因素。若是在各个吸收波段都采用改进的Langley法的话,需要计算在特定大气模式下的与吸收气体有关的参数,计算量大,计算方法复杂,标定的不确定性大。

标准光源标定法是指利用太阳辐射计测定一定光谱范围的标准光源的能量,从而达到绝对标定的目的,这是最快的标定方法。标准光源法的准确性依赖于准确的校准以及其它一些因素,例如光源、接收距离、辐射计所用光阑等等。由于不同的标准光源存在5%~10%的相对误差,利用标准光源法作太阳辐射计的绝对标定还存在一定的不确定性,故其精确度最低。

现有技术的缺点:Langley法对非气体吸收波段有较高的精度,而在气体吸收波段则不遵循Bear-Bouguer-Lambert定律,当需要获得连续精细的大气光谱透过率特征的时候,有很多的气体吸收波段,这时候如果在所有波段采用Langley法进行标定就会带来一定的误差,即使采用改进的Langley法来进行标定,还需要分别拟合出与气体吸收有关的参数,计算量较大。标准光源标定法也称实验室标定法,但由于不同的标准光源存在5%-10%的相对误差,利用标准光源法作太阳辐射计的绝对标定还存在一定的不确定性,故其精确度最低。

本发明的目的:在需要获得连续精细的大气透过率光谱特征的应用背景下,通过将标准光源法与Langley法结合起来,提高了标定精度。



技术实现要素:

本发明专利的目的在于提供一种标定测量整层大气光谱透过率的方法,其特征在于该方法包括以下步骤:

首先采用交叉标定方法,这种标定方基于太阳辐射计的绝对定标系数保持不变这一特征,步骤如下:

步骤(1):计算与太阳辐射计探测硬件参数相关的信噪比较高通道,量子效率指的是感光耦合元件将其受光表面接收到的光子转换为电子-空穴对的百分比例,视星等是指观测者用肉眼所看到的星体亮度,视星等既与星体的发光能力有关,也与星体距离观测者的距离有关,设零等星的光子流为则M等星的光子流密度为:

式中,的单位为w/m2/um。太阳的视星等为-26.74,由(3)式就可以计算出太阳的光子流密度光谱仪每毫秒接收光子数为:

式中,A为耦合进入光谱仪的有效面积,单位为m2;λ为波长,单位为um;h为普朗克常量,单位为j*s;c为光速,单位为m/s;q为CCD探测器的量子效率。l为所用滤光片的透过率;通常定义探测极限为当探测器探测到目标的信号大于或等于5倍的噪声;将计算得出的1ms系统理论响应值与系统的1ms暗噪声进行比较,可以挑选出与探测器硬件参数相关的信噪比较好的通道;

步骤(2):利用MODTRAN软件模拟计算与大气参数相关的信噪比较高的通道,利用MODTRAN软件的太阳直射辐射模式,模拟计算高海拔地区从相对大气质量1到相对大气质量15的太阳直射辐照度,通过MODTRAN软件计算得出的太阳直射辐照度值通过卷积,把光谱分辨率换算到0.36nm的半高宽度,即与所用光栅光谱仪的光谱分辨率相同;

将计算得到的太阳光谱辐照度值,以相对大气质量m为横坐标,以ln(irradiance)为纵坐标,按照波长分布分别进行最小二乘法拟合外推,得到外推的大气层外的太阳光谱辐照度值,并与MODTRAN软件内置的大气层外的太阳光谱辐照度值进行比较,认为两条曲线相对误差在±0.5%以内的通道为信噪比较好的通道;

步骤(3):将步骤(1)与步骤(2)的计算结果进行比较,综合考虑了太阳辐射计的硬件参数与大气参数,可以挑选出共i条信噪比较高的适合采用Langley法标定的通道λi;选择天气晴朗,能见度较高、无风的天气进行Langley标定;

Langley法标定的基本原理为:假设大气由若干平行平面层组成,在某一给定的太阳位置(用太阳天顶角θ表示),根据Bear-Bouguer-Lambert定律,在地面观测到的波长λi处的太阳直接辐射的辐照度F(λi)可以表示为:

F(λi)=Foi)*exp[-m(θ)τ(λi)] (5)

Foi)是大气层顶的太阳单色辐照度,m(θ)是沿天顶角θ方向的相对大气质量,τ(λi)是波长为λi的指向天顶方向的大气光学厚度,因为太阳辐射计的输出信号正比于线阵CCD在太阳辐射计视场角内接收的太阳辐照度,信号经后续电路转换后输出的数值也正比于辐照度,定义P(λi)是太阳辐射计的测量值,既光子数;Poi)是对应于大气层顶的太阳辐照度Foi)的太阳辐射计测量值,C(入)是太阳辐射计的定标因子,则(5)式可改写为:

P(λi)=C(λ)Foi)*exp[-m(θ)τ(λi)]=Poi)*exp[-m(θ)τ(λi)] (6)

两边同时取对数,则有:

ln[P(λi)]=ln[Poi)]-m(θ)τ(λi) (7)

当大气清洁稳定时,可以认为大气光学厚度τ(λi)为常数,以大气质量m(θ)为自变量,ln[P(λi)]为变量在直角坐标系中作图,由数学知识可知,若τ(λi)不变的话,根据(7)式可以得到一条直线,这条直线的截距是ln[Poi)],它正比于太阳常数。直线的斜率就是光学厚度τ(λi);这样就通过Langley法获得了信噪比较好通道λi处的外推值Poi)。

步骤(4):对太阳辐射计进行实验室标准光源定标,使用美国海洋公司的DH-2000-CAL进行定标,所述DH-2000-CAL氘卤钨标准能量灯是一个用来校准辐射测量系统绝对光谱响应的UV-NIR光源;通过DH-2000-CAL卤钨标准能量灯和SpectraSuite软件,可以确定在300-1050nm波长范围的光谱绝对强度;光谱仪选用的是美国海洋公司的USB-2000+,内部所用的探测器为ILX511B线性CCD阵列,具有2048pixels,配合狭缝和光栅感光范围为450-1000nm,平均分辨率为0.36m/pixel;由于光谱仪可以对所有波长的单色光同时检测,在1s内可完成几十次或上百次的扫描累加,从而得到较高的信噪比和灵敏度。由于光谱仪光路固定,整个仪器内无移动性部件,仪器波长精度得到保证;光谱仪的光纤探头选用的是视场角为1°的视场光阑;

采用标准光源法对辐射计进行标定,所用定标公式如下:

dW(λ)=(dWi+1(λ)-dWi-1(λ))/2 (9)

式中:EL为标准灯在系统入瞳处辐照度;RL(λ)为系统对标准灯的绝对光谱响应函数,单位为uj/count;T为定标时系统的积分时间,单位为s;A为光耦合进入系统的有效面积,单位为cm2;DNL(λ)代表系统对标准灯的响应值,单位为counts;DNL0(λ)表示系统的暗噪声,即在光谱仪无任何输入时,系统的响应值;dW(λ)为光谱仪的波长分布,单位为nm,可由(9)式计算;则系统对标准灯的响应值可以表示为:

标准灯绝对定标系数为:

同理,系统对日观测时,大气层顶系统的响应值可以表示为:

用Langley法定标得到的Po(λ)替代DNS(λ)-DNS0(λ),Langley法绝对定标系数为:

由于同一台仪器对不同光源的绝对定标系数是一定的,在挑选出的可以采用Langley法标定的通道λi,与应当非常接近。联立(11)式与(13)式得:

S为比例因子,标准灯定标时几何因子造成的误差都可归入于此系数。求出S之后,其它非Langley通道的Po(λ)可以表示为:

步骤(5):计算整层大气光谱透过率,最终的整层大气光谱透过率的计算公式为:

式中,DNSD(λ)为在实际对日测量过程中,系统在地面所得的响应值。值得一提的是,测量过程中的积分时间要与标定过程中的积分时间一致,若不一致,需将测量数据按照积分时间进行归一。

2、如权利要求1所述的一种标定测量整层大气光谱透过率的方法,其特征在于步骤一与步骤二中结合系统自身硬件参数与大气参数筛选信噪比较高的通道进行标定的方法。

3、如权利要求1所述的一种标定测量整层大气光谱透过率的方法,其特征在于步骤四中的公式(14)推导出的比例因子,将辐射基准在整个光谱范围内溯源到大气层顶的太阳光谱辐照度的方法。

有益效果:

本方法计算简单,通过分析大气参数及系统自身硬件参数的特点,寻找信噪比较高的标定通道,然后将Langley法与标准光源法结合起来进行标定。本方法将辐射基准在整个光谱范围内溯源到大气层顶的太阳光谱辐照度,减小了实验室标定过程中的测量误差,提高了标定精度。本方法可以应用于需要获得连续精细大气光学参数的场合,为强吸收波段的定标提供一种技术手段。

附图说明

图1.大气外的太阳辐照度光谱分布;

图2.零等星辐照度曲线;

图3光谱仪CCD量子效率曲线;

图4滤光片透过率曲线;

图5计算的1ms系统理论响应值与信噪比曲线;

图6相对大气质量与太阳高度角的对应关系;

图7不同相对大气质量对应的高海拔地区太阳光谱辐照度值;

图8拟合的与内置的大气层外太阳光谱辐照度曲线;

图9突出显示信噪比较好的通道;

图10拟合示意图;

图11定标系统光路示意图;

图12太阳辐射计测量系统示意图;

图13 1ms积分时间定标结果与标准灯在系统入瞳处辐照度曲线;

图14利用交叉标定法实测的某天整层大气光谱透过率与MODTRAN对比图;

图15标定流程图。

具体实施方式

下面结合具体实施例,进一步阐述本发明。

Langley法对非气体吸收波段有较高的精度,而在气体吸收波段则不遵循Bear-Bouguer-Lambert定律,当需要获得连续精细的大气光谱透过率特征的时候,有很多的气体吸收波段,这时候如果在所有波段采用Langley法进行标定就会带来一定的误差。

标准光源标定法是指利用太阳辐射计测定一定光谱范围的标准光源的能量,从而达到绝对标定的目的,这是最快的标定方法。标准光源法的准确性依赖于准确的校准以及其它一些因素,例如光源、接收距离、辐射计所用光阑等等。由于不同的标准光源存在5%~10%的相对误差,利用标准光源法作太阳辐射计的绝对标定还存在一定的不确定性,故其精确度最低。在实际测量过程中,太阳辐射计实时跟踪太阳,光谱仪便可以实时获得太阳直射光谱S1,经过公式(1)便可以计算出抵达地面的太阳直射光谱辐照度。

I1(λ)=C(λ)*(S1-D1)/(T1*A*dL) (1)

式中:C(λ)为太阳辐射计的定标因子,单位uj/counts。孔为积分时间,A为光耦合进入光谱仪的有效面积,S1代表跟踪太阳时所测光谱,D1代表暗光谱,dL为光谱仪的波长分布则大气透过率的计算公式为:

t=I1(λ)/I2(λ) (2)

I2(λ为大气外的太阳辐照度光谱分布,如下图1所示;

通过对上述标定方法的介绍,明确了这两种方法的优缺点,现提出一种交叉标定方法。这种标定方仅仅依赖于太阳辐射计对标准灯的光谱响应曲线。步骤如下:

步骤(1):计算与太阳辐射计探测硬件参数相关的信噪比较高通道。量子效率指的是感光耦合元件将其受光表面接收到的光子转换为电子-空穴对的百分比例。视星等是指观测者用肉眼所看到的星体亮度。视星等既与星体的发光能力有关,也与星体距离观测者的距离有关。设零等星的光子流为零等星辐照度曲线绘图如图2所示。则M等星的光子流密度为:

式中,的单位为w/m2/um。太阳的视星等为-26.74,由(3)式就可以计算出太阳的光子流密度光谱仪每毫秒接收光子数为:

式中,A为耦合进入光谱仪的有效面积,单位为m2;λ为波长,单位为um;h为普朗克常量,单位为j*s;c为光速,单位为m/s;q为CCD探测器的量子效率,绘图如图3所示。l为所用滤光片的透过率,绘图如图4所示。通常定义探测极限为当探测器探测到目标的信号大于或等于5倍的噪声。将计算得出的1ms系统理论响应值与系统的1ms暗噪声进行比较,绘图如图5所示,可以挑选出与探测器硬件参数相关的信噪比较好的通道。

(2)利用MODTRAN软件模拟计算与大气参数相关的信噪比较好的通道,利用MODTRAN软件的太阳直射辐射模式,模拟计算高海拔地区从相对大气质量1到相对大气质量15的太阳直射辐照度。图6给出了中纬度夏季地区某一天相对大气质量与太阳高度角的对应关系。将MODTRAN软件计算得出的太阳直射辐照度值通过内插值,把光谱分辨率换算到0.36nm的半高宽度,即与所用光栅光谱仪的光谱分辨率相同。图7给出了用MODTRAN软件计算出的相对大气质量均匀变化对应的高海拔地区太阳光谱辐照度值。将计算得到的太阳光谱辐照度值,以相对大气质量m为横坐标,以ln(irradiance)为纵坐标,按照波长分布分别进行最小二乘法拟合外推,得到外推的大气层外的太阳光谱辐照度值,并与MODTRAN软件内置的大气层外的太阳光谱辐照度值进行比较,如图8所示。其中连续曲线为最小二乘法外推得到的大气层外太阳光谱辐照度曲线,间断曲线为MODTRAN内置的大气层外太阳光谱辐照度曲线。

认为两条曲线相对误差在±0.5%以内的通道为信噪比较好的通道,将这些通道以方格突出显示,绘图如图9所示。

(3)将步骤(1)与步骤(2)的计算结果进行比较,综合考虑了太阳辐射计的硬件参数与大气参数,可以挑选出若干信噪比较高的适合采用Langley法标定的通道λi;选择天气晴朗,能见度较高、无风的天气进行Langley标定;

Langley法标定的基本原理为:假设大气由若干平行平面层组成,在某一给定的太阳位置(用太阳天顶角θ表示),根据Bear-Bouguer-Lambert定律,在地面观测到的波长λi处的太阳直接辐射的辐照度F(λi)可以表示为:

F(λi)=Foi)*exp[-m(θ)τ(λi)] (5)

Foi)是大气层顶的太阳单色辐照度,m(θ)是沿天顶角θ方向的相对大气质量,τ(λi)是波长为λi的指向天顶方向的大气光学厚度,因为太阳辐射计的输出信号正比于线阵CCD在太阳辐射计视场角内接收的太阳辐照度,信号经后续电路转换后输出的数值也正比于辐照度,定义P(λi)是太阳辐射计的测量值,既光子数。Poi)是对应于大气层顶的太阳辐照度Foi)的太阳辐射计测量值,C(入)是太阳辐射计的定标因子,则(5)式可改写为:

P(λi)=C(λ)Foi)*exp[-m(9)τ(λi)]=Poi)*exp[-m(θ)τ(λi)] (6)

两边同时取对数,则有:

ln[P(λi)]=ln[Poi)]-m(θ)τ(λi) (7)

当大气清洁稳定时,可以认为大气光学厚度τ(λi)为常数,以大气质量m(θ)为自变量,ln[P(λi)]为变量在直角坐标系中作图,绘图如图10所示。由数学知识可知,若τ(λi)不变的话,根据(7)式可以得到一条直线,这条直线的截距是ln[Poi)],它正比于太阳常数。直线的斜率就是光学厚度τ(λi);

这样就通过Langley法获得了信噪比较好通道λi处的外推值Poi)。

(4)对太阳辐射计进行实验室标准光源定标,使用美国海洋公司的DH-2000-CAL进行定标,DH-2000-CAL氘卤钨标准能量灯是一个用来校准辐射测量系统绝对光谱响应的UV-NIR光源。通过DH-2000-CAL卤钨标准能量灯和SpectraSuite软件,可以确定在300-1050nm波长范围的光谱绝对强度。光谱仪选用的是美国海洋公司的USB-2000+,内部所用的探测器为ILX511B线性CCD阵列,具有2048pixels,配合狭缝和光栅感光范围为450-1000nm,平均分辨率为0.36m/pixel。由于光谱仪可以对所有波长的单色光同时检测,在1s内可完成几十次或上百次的扫描累加,从而得到较高的信噪比和灵敏度。由于光谱仪光路固定,整个仪器内无移动性部件,仪器波长精度得到保证。光谱仪的光纤探头选用的是视场角为1°的视场光阑。定标系统示意图绘图如图11所示,标准光源发出的光在积分球内腔表面经过多次漫反射,当积分球平衡时,即积分球内腔光通量均匀分布时,积分球各处照度相等。从积分球出来的光线传输至光纤探头,再由光纤传输进入光谱仪内部,由光谱仪内部电路转化为电信号,通过USB接口传输至计算机中。太阳辐射计测量系统示意图绘图如图12所示;

采用标准光源法对辐射计进行标定,所用定标公式如下:

dW(λ)=(dWi+1(λ)-dWi-1(λ))/2 (9)

式中:EL为标准灯在系统入瞳处辐照度;RL(λ)为系统对标准灯的绝对光谱响应函数,单位为uj/count;T为定标时系统的积分时间,单位为s;A为光耦合进入系统的有效面积,单位为cm2;DNL(λ)代表系统对标准灯的响应值,单位为counts;DNL0(λ)表示系统的暗噪声,即在光谱仪无任何输入时,系统的响应值;dW(λ)为光谱仪的波长分布,单位为nm,可由(9)式计算;1ms积分时间定标结果与标准灯在系统入瞳处辐照度曲线如图13所示。则系统对标准灯的响应值可以表示为:

标准灯绝对定标系数为:

同理,系统对日观测时,大气层顶系统的响应值可以表示为:

用Langley法定标得到的Po(λ)替代DNS(λ)-DNS0(λ),Langley法绝对定标系数为:

由于同一台仪器对不同光源的绝对定标系数是一定的,在挑选出的可以采用Langley法标定的通道λi,与应当非常接近。联立(11)式与(13)式得:

S为比例因子,标准灯定标时几何因子造成的误差都可归入于此系数。

求出S之后,其它非Langley通道的Po(λ)可以表示为:

步骤(5):计算整层大气光谱透过率,最终的整层大气光谱透过率的计算公式为:

式中,DNSD(λ)为在实际对日测量过程中,系统在地面所得的响应值。值得一提的是,测量过程中的积分时间要与标定过程中的积分时间一致,若不一致,需将测量数据按照积分时间进行归一。

图14给出了利用交叉标定法实测的某天整层大气光谱透过率与MODTRAN对比曲线。MODTRAN是由美国空军地球物理实验室开发和研制的中光谱分辨率大气透过率及辐射传输算法软件,可估算在多种环境条件下大气路径上的辐射和透过率。从图中可以看出,实测的大气透过率与MODTRAN的计算结果有着相似的变化趋势。在830nm和940nm附近的吸收峰主要由水汽造成。在680nm、730nm和760nm附近是氧气的吸收峰。这证明了这种交叉标定法的可行性,二者相对误差最大为20%,这可能是由于MODTRAN参数的选择引起的。标定流程图绘图如图15所示。

本方法计算简单,通过分析大气参数及系统自身硬件参数的特点,寻找信噪比较高的标定通道,然后将Langley法与标准光源法结合起来进行标定。本方法将辐射基准在整个光谱范围内溯源到大气层顶的太阳光谱辐照度,减小了实验室标定过程中的测量误差,提高了标定精度。本方法可以应用于需要获得连续精细大气光学参数的场合,为强吸收波段的定标提供一种技术手段。

应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1