一种磁共振成像方法及装置与流程

文档序号:11690472阅读:278来源:国知局
一种磁共振成像方法及装置与流程

本发明属于磁共振重建技术领域,尤其涉及一种磁共振成像方法及装置。



背景技术:

目前基于信号处理利用先验信息进行磁共振图像重建的方法可以简单的分为自适应型和非自适应型两类。例如,字典学习和数据驱动紧凑框架是自适应型的,全局变换和小波变换是非自适应型的。自适应型可以获得更多的结构信息但计算复杂,而非自适应型利于计算,但容易丢失信息。这些方法,都只是从要进行重建的图像中获取先验信息,或只利用少量的相关图像,无法发掘利用大量数据中的先验信息,导致磁共振成像速度较慢,成像精度较低。

故,有必要提出一种新的技术方案,以解决上述技术问题。



技术实现要素:

鉴于此,本发明实施例提供一种磁共振成像方法及装置,以在保留原本对比度的情况下,恢复出磁共振图像欠采丢失的信息,从而加速成像,并改善磁共振成像精度。

本发明实施例的第一方面,提供一种磁共振成像方法,所述磁共振成像方法包括:

获取样本物体的全采的线下多对比度图像;

在k空间对所述全采的线下多对比度图像中的每个全采图像进行欠采,以获取欠采的多对比度图像;

根据所述欠采的多对比度图像和所述全采的线下多对比度图像,训练深度学习网络;

获取待测物体的欠采图像;

将所述待测物体的欠采图像输入至训练好的深度学习网络,以获取所述待测物体的线上磁共振图像。

本发明实施例的第二方面,提供一种磁共振成像装置,所述磁共振成像装置包括:

线下多对比度图像获取模块,用于获取样本物体的全采的线下多对比度图像;

欠采模块,用于在k空间对所述全采的线下多对比度图像中的每个全采图像进行欠采,以获取欠采的多对比度图像;

训练模块,用于根据所述欠采的多对比度图像和所述全采的线下多对比度图像,训练深度学习网络;

欠采图像获取模块,用于获取待测物体的欠采图像;

线上成像模块,用于将所述待测物体的欠采图像输入至训练好的深度学习网络,以获取所述待测物体的线上磁共振图像。

本发明实施例与现有技术相比存在的有益效果是:本发明实施例获取样本物体的全采的线下多对比度图像,并在k空间对所述全采的线下多对比度图像中的每个全采图像进行欠采,以获取欠采的多对比度图像,根据所述欠采的多对比度图像和所述全采的线下多对比度图像,训练深度学习网络,并将获取的待测物体的欠采图像输入至训练好的深度学习网络,以获取所述待测物体的线上磁共振图像。本发明实施例通过从大量的多对比度训练集(即样本物体的全采的线下多对比度图像)中学习先验信息,训练深度学习网络,并将训练好的深度学习网络模型应用于磁共振图像的重建中,可以保证在保留原本对比度的情况下,恢复出磁共振图像欠采丢失的信息,从而加速成像,并改善磁共振成像精度。

附图说明

为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。

图1是本发明实施例一提供的磁共振成像方法的实现流程图;

图2是本发明实施例二提供的磁共振成像装置的组成示意图。

具体实施方式

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。

实施例一:

图1示出了本发明实施例一提供的磁共振成像方法的实现流程,所述实现流程详述如下:

步骤s101,获取样本物体的全采的线下多对比度图像。

在本发明实施例中,所述样本物体可以是用户选择的作为样本的某一物体。所述获取样本物体的全采的线下多对比度图像是获取所述样本物体上某一区域的大量的全采的线下训练的多对比度图像,且要求该全采的线下多对比度图像的分辨率相同,例如在相同的分辨率下获取小张的头部上某一器官的全采的线下多对比度图像。

以人为例,由于不同人同一器官或组织有着相似的解剖特性,如医院每天都可以获得大量的图像数据,可以充分利用这些大量的先验信息对待测物体的磁共振图像进行重建。而本发明实施例中的样本物体的全采的线下多对比度图像可以是指从大量的图像数据中抽取的针对某人某一器官或组织的在同一分辨率下的多个全采的线下多对比度图像。

可选的,所述多对比度图像包括t1加权图像、t2加权图像和质子密度pd图像,所述多对比度图像的视野和矩阵尺寸相同。

其中,所述t1加权图像主要突出所述样本物体中组织的纵向弛豫差别,尽量减少组织其他特性如横向弛豫等对图像的影响。所述t2加权图像主要突出所述样本物体中组织的横向弛豫差别。所述质子密度pd图像主要反映所述样本物体中组织的质子含量差别。

纵向弛豫时间常数t1是指纵向磁化从最小值恢复到平衡态磁化矢量63%的时间,是纵向磁化矢量恢复快慢的一个尺度。横向弛豫时间常数t2是指横向磁化衰减至最大值的37%所经历的时间,是横向弛豫衰减快慢的一个尺度。

可选的,所述获取样本物体的全采的线下多对比度图像包括:

获取所述样本物体的成像参数;

通过调整所述成像参数,获取所述样本物体的全采的线下多对比度图像。

在本发明实施例中,所述成像参数包括但不限于重复时间tr、回波时间te和加速因子等。通过调整重复时间tr、回波时间te和加速因子等,获取所述样本物体的全采的线下多对比度图像。

步骤s102,在k空间对所述全采的线下多对比度图像中的每个全采图像进行欠采,以获取欠采的多对比度图像。

其中,所述k空间将原始磁共振采样时间域数据映射到频率域,是采样的磁共振数据构成的傅里叶频域空间。

步骤s103,根据所述欠采的多对比度图像和所述全采的线下多对比度图像,训练深度学习网络。

优选的,所述深度学习网络可以使用能有效发掘数据信息,自主学习图像内在特征,且具有较强的非线性表达能力的卷积神经网络。

所述卷积神经网络可以设计为三层的卷积神经网络,可以应用于对大数据的学习,并支持gpu计算。三层卷积神经网络的配置为:第一层为128个9*9的卷积核;第二层为64个5*5的卷积核;第三层为:1个5*5的卷积核。

可选的,所述根据所述欠采的多对比度图像和所述全采的线下多对比度图像,训练深度学习网络包括:

将所述欠采的多对比度图像作为所述深度学习网络的输入数据,将所述全采的线下多对比度图像作为所述深度学习网络的期望数据,训练所述深度学习网络。

可选的,所述将所述欠采的多对比度图像作为所述深度学习网络的输入数据,将所述全采的线下多对比度图像作为所述深度学习网络的期望数据,训练所述深度学习网络包括:

在所述深度学习网络中,构建所述欠采的多对比度图像中每个欠采图像与所述全采的线下多对比度图像中对应的全采图像的映射关系;

根据该映射关系训练所述深度学习网络。

具体地,所述映射关系是指非线性映射关系。

步骤s104,获取待测物体的欠采图像。

在实际应用场景中,所述获取待测物体的欠采图像可以是指获取所述待测物体上要进行磁共振的某一器官或组织的欠采图像。例如,小张的头部中某一器官的欠采图像。

步骤s105,将所述待测物体的欠采图像输入至训练好的深度学习网络,以获取所述待测物体的线上磁共振图像。

具体地,所述待测物体的线上磁共振图像可以是指所述待测物体上进行磁共振的某一器官或组织的磁共振图像,该磁共振图像是实时成像的。

本发明实施例通过从大量的多对比度训练集(即样本物体的全采的线下多对比度图像)中学习先验信息,训练深度学习网络,并将训练好的深度学习网络模型应用于磁共振图像的重建中,可以保证在保留原本对比度的情况下,恢复出磁共振图像欠采丢失的信息,从而加速成像,并改善磁共振成像精度。

实施例二:

图2示出了本发明实施例二提供的磁共振成像装置的组成示意图,为了便于说明,仅示出了与本发明实施例相关的部分,详述如下:

线下多对比度图像获取模块21,用于获取样本物体的全采的线下多对比度图像;

欠采模块22,用于在k空间对所述全采的线下多对比度图像中的每个全采图像进行欠采,以获取欠采的多对比度图像;

训练模块23,用于根据所述欠采的多对比度图像和所述全采的线下多对比度图像,训练深度学习网络;

欠采图像获取模块24,用于获取待测物体的欠采图像;

线上成像模块25,用于将所述待测物体的欠采图像输入至训练好的深度学习网络,以获取所述待测物体的线上磁共振图像。

可选的,所述线下多对比度图像获取模块21包括:

成像参数获取单元211,用于获取所述样本物体的成像参数;

图像获取单元212,用于通过调整所述成像参数,获取所述样本物体的全采的线下多对比度图像。

可选的,所述多对比度图像包括t1加权图像、t2加权图像和质子密度pd图像。

可选的,所述训练模块23用于:

将所述欠采的多对比度图像作为所述深度学习网络的输入数据,将所述全采的线下多对比度图像作为所述深度学习网络的期望数据,训练所述深度学习网络。

可选的,所述训练模块23包括:

构建单元231,用于在所述深度学习网络中,构建所述欠采的多对比度图像中每个欠采图像与所述全采的线下多对比度图像中对应的全采图像的映射关系;

训练单元232,用于根据该映射关系训练所述深度学习网络。

本发明实施例提供的磁共振成像装置可以使用在前述对应的方法实施例一中,详情参见上述实施例一的描述,在此不再赘述。

所述领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即所述装置的内部结构划分成不同的功能模块,上述功能模块既可以采用硬件的形式实现,也可以采用软件的形式实现。另外,各功能模块的具体名称也只是为了便于相互区别,并不用于限制本申请的保护范围。

综上所述,本发明实施例通过从大量的多对比度训练集(即样本物体的全采的线下多对比度图像)中学习先验信息,训练深度学习网络,并将训练好的深度学习网络模型应用于磁共振图像的重建中,可以保证在保留原本对比度的情况下,恢复出磁共振图像欠采丢失的信息,从而加速成像,并改善磁共振成像精度。

本领域普通技术人员还可以理解,实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,所述的程序可以在存储于一计算机可读取存储介质中,所述的存储介质,包括rom/ram、磁盘、光盘等。

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1