柱[5]芳烃作为分子传感器在纯水相中比色‑荧光识别甲硫氨酸的应用的制作方法

文档序号:11284052阅读:726来源:国知局
柱[5]芳烃作为分子传感器在纯水相中比色‑荧光识别甲硫氨酸的应用的制造方法与工艺

本发明涉及柱[5]芳烃在分子检测领域的应用,尤其涉及柱[5]芳烃为分子传感器在纯水相中比色-荧光专一性识别甲硫氨酸的应用,属于分子检测领域。



背景技术:

甲硫氨酸,是构成人体的必需氨基酸之一,参与蛋白质合成,是含硫必需氨基酸,生物体必须将d-型在体内转化为l-型才能被机体利用。与生物体内各种含硫化合物的代谢密切相关。在生物体内先从atp接受腺苷基变成s-腺苷酰甲硫氨酸(活性甲硫氨酸)再进行甲基转移。失去甲基的同型半胱氨酸经胱硫醚变成半胱氨酸。当缺乏蛋氨酸时,会引起食欲减退、生长减缓或不增加体重、肾脏肿大和肝脏铁堆积等现象,最后导致肝坏死或纤维化。所以,甲硫氨酸在生命过程中扮演着重要的角色。

对于氨基酸的检测方法,之前有相关的文献报道,例如,高效液相色谱法,分光光度法,电化学法,质谱分析法,毛细管电泳法等等。然而对甲硫氨酸检测的方法却报道很少。甲硫氨酸是α-氨基酸的一种,在它的分子结构中含有一个碱性基团(-nh2)和一个酸性基团(-cooh),因而是两性的。在强酸性溶液中它是以阳离子形式存在,而在强碱性溶液中是以阴离子形式存在的,在等电点处结晶出来,即当加酸或加碱至羧基和氨基的离子化程度相等时,溶液的ph值为它的等电点。甲硫氨酸的等电点为5.74,由于这些性质,所以甲硫氨酸虽然是有机物,但它具有无机物的某些属性,如它可以溶于水,但难溶于非极性物质,有相当高的熔点,其水溶液性质与具有高偶极矩的水溶液相似等等。目前,纯水相中进行识别甲硫氨酸的方法报道特别少,大部分识别检测都是在有机溶液里。而水是生物生理活动和日常生活中必不可少的溶液,因此在纯水相中检测识别是非常重要的。

柱芳烃,一种在苯环的2,5位用亚甲基桥连的新型大环分子,自从2008年首次发现以来已经引起了很大的关注度,柱芳烃因为其高度对称的结构和含有富电子体系的空腔结构使得其在超分子聚合物,传感器等领域展现出其独特的识别性能与应用前景。cn201610200496.6公开了对称性柱[5]芳烃作为受体比色荧光识别l-色氨酸的应用,该柱[5]芳烃(dp5)传感器能与l-色氨酸在dmso/ch3ch2oh/h2o(8:1:1,v/v/v)的混合溶液中形成1:1络合,而其他人体必须的19种l型氨基酸没有影响。但是由于该柱[5]芳烃只有对称的两条长烷基链,不能溶解与水,只能通过有机溶剂中溶解后再进行识别。识别组装只是通过π-π作用的电子转移进行组装,而使得发生荧光“关-开”的效果。



技术实现要素:

本发明的目的是提供一种柱[5]芳烃作为分子传感器在纯水相中高选择性、高灵敏度比色-荧光识别甲硫氨酸的应用方法。

水溶性的阳离子柱[5]芳烃,是以柱[5]芳烃的大环为荧光信号报告基团,用三甲胺修饰柱[5]芳烃引进了多个亲水性集团,使其具有很好的水溶性。其中柱[5]芳烃上的季铵盐集团的存在,增强了传感器的水溶性,使其易溶于水,一些氨基酸穿入柱[5]芳烃的空腔,进行主客体络合,从而实现了在纯水介质中对氨基酸的单一选择性识别,因此,在环境检测中有很好的应用前景。柱[5]芳烃标记为p5,其结构式如下:

下面通过具体实验对柱[5]芳烃的荧光性能、以及荧光识别甲硫氨酸的方法和机理进行分析说明。

1、p5对氨基酸的比色-荧光相应实验

移取10ul配好的p5水溶液(2.0×10-3mol/l)于一系列点滴板中,分别加入氨基酸ala,arg,asp,cys,gln,glu,his,ile,gly,asn,leu,lys,met,phe,pro,ser,thr,trp,tyr和val的水溶液(浓度为1.0×10-4m),若溶液荧光打开,且溶液颜色由无色转变为淡黄绿色,则说明滴加的是met,若溶液的荧光没有发生变化,则说明滴加的不是met。在其相应的荧光光谱中,甲硫氨酸的加入使p5荧光的吸收峰明显增强,而其余氨基酸的加入对p5的荧光光谱无明显影响(见图1)。说明p5能够对甲硫氨酸进行专一性的识别。

2、滴定实验

移取2.0mlp5的水溶液(2.0×10-3mol/l)于比色池中,用累积加样法逐渐加入met的水的溶液。发现随着met的加入,主体p5在650nm处的吸收峰逐渐增强,直到终点,于25℃测其荧光发射光谱(见图2)。通过对滴定数据的处理以及应用公式,算出了甲硫氨酸检测的最低检测限lod=6.328×10-7m。

3、抗干扰性能检测

为了测定传感器分子p5对met的检测效果,我们又进行了如下测试:取两组10ml比色管分别加入0.5ml该受体的水溶液,再分别加入0.25ml各种氨基酸的水溶液(4×10-3mol·l−1),然后用蒸馏水稀释至5ml刻度;另外一组中再分别加0.25ml的met水溶液,在每一个比色管中分别加入0.25ml其它十九种氨基酸(ala,arg,asp,cys,gln,glu,his,ile,gly,asn,leu,lys,phe,pro,ser,thr,trp,tyr,val),然后用蒸馏水稀释至5ml刻度。将上述溶液混合均匀后进行观察。结果发现,加入上述十九种氨基酸后,受体p5的荧光吸收峰仍然存在,这与met对受体的影响是一致的(见图3),从而说明p5检测met基本不受其它氨基酸的干扰。

4、p5的ph响应实验

传感器超分子p5和met的稳定性也可以通过一系列ph缓冲液检测。从结果看,超分子络合物p5-met在酸性和碱性环境下,稳定性良好。(见图4)。

5、p5对met识别机理

针对传感器分子p5对met识别机理的探究,我们通过可以通过1hnmr来表征p5与met的自组装机理。主体p5与加met后的混合物对比的1hnmr(图5)表明:当把met加入到p5的d2o溶液中时,p5和met上的质子峰发生了明显的移动。比较特殊的是,met上的三重峰ha和hb明显的向高场移动(δδ=-1.81,-0.51ppm),而且变宽。出现这个现象原因可能是,这些质子进入到了p5的分子空腔中屏蔽了富电子空腔。而且,met上的双重峰hd和hc逐渐向高场移动(δδ=0.30,0.20ppm),可能原因是,met的烷基链和p5的富电子空腔发生了ch-π作用。这些ch-π作用,同样也使p5上的h1,h2,h3,向高场移动(δδ=0.25,0.40ppm)。met上的羧酸基团与p5上的季铵盐通过静电引力也参与了自组装过程。这些静电相互作用力直接导致了met上的羧酸盐基团向p5季铵盐基团的电荷转移。同理,p5上的h3-8同样也向高场移动。根据这些结果,我们推测出了它的自组装机理,met上部分的烷基链进入到了p5的分子空腔,柱[5]芳烃环与met的烷基链上有ch-π作用,以及met上的羧基与p5的季铵盐之间发生了静电引力。通过这种方式,p5和met构成了主客体络合物p5-met。机理如下式所示:

为了进一步说明,p5和met之间的相互作用。我们继续做了柱[5]芳烃和met混合液的二维核磁氢图谱图(图6)。从图谱上可以看出,met上的hb质子与柱[5]芳烃p5上的h1、h2,以及met上的hb和p5上的h3、h4、h7、h8都有明显的相互作用。二维核磁氢图谱图谱从侧面说明,p5与met的自组装是以ch-π作为自组装驱动力。2甲硫氨酸的烷基链和p5的富电子空腔发生了ch-π作用,而且甲硫氨酸上的羧酸基团与p5上的季铵盐通过静电引力也参与了自组装过程,两种作用力存在是的更容易发生组装,从而提高了识别的灵敏度。

附图说明

图1为p5对甲硫氨酸的荧光响应图。

图2为p5对甲硫氨酸的滴定实验。

图3为p5对其它氨基酸的抗干扰图。

图4为p5-met对不同ph下稳定性测定图。

图5为p5与met组装识别机理的核磁氢谱图。

图6为p5与met组装识别机理的二维核磁氢谱图。

图7为在p5的水溶液中,依次加入ala,arg,asp,cys,gln,glu,his,ile,gly,asn,leu,lys,met,phe,pro,ser,thr,trp,tyr和val(1.0´10-5moll-1)后,在紫外灯下的照片。

具体实施方式

下面通过具体实施例对本发明传感器分子p5比色-荧光检测甲硫氨酸的方法作进一步说明。

柱[5]芳烃p5的合成:按文献:y.ma,x.ji,f.xiang,x.chi,c.han,j.he,z.abliz,w.chen,f.huang,chem.commun.47(2011)12340合成。

柱[5]芳烃p5荧光检测met:在传感器分子p5的水溶液中,加入ala,arg,asp,cys,gln,glu,his,ile,gly,asn,leu,lys,met,phe,pro,ser,thr,trp,tyr和val的水溶液(4×10-3mol·l-1),若p5溶液产生淡黄绿色荧光,这说明加入的是met;若p5溶液的荧光无明显变化,则说明加入的是其它氨基酸。

移取柱[5]芳烃感器超分子水溶液(2×10-3mol/l)于一系列点滴板中,分别加依次滴加ala,arg,asp,cys,gln,glu,his,ile,gly,asn,leu,lys,met,phe,pro,ser,thr,trp,tyr和val的水溶液,若点滴板中的荧光打开,溶液荧光颜色由无色转变为淡黄绿色,说明滴加的是met,若溶液的荧光没有打开,则说明滴加的不是met。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1