基于兰姆波的不均匀截面结构损伤识别成像方法及系统与流程

文档序号:14896575发布日期:2018-07-08 07:33阅读:167来源:国知局

本发明涉及图像信息处理技术领域,具体地,涉及基于兰姆波的不均匀截面结构损伤识别成像方法及系统。



背景技术:

兰姆波(lambwaves)是在自由板中穿上的平面应变波,此时板的上、下表面应力为零。随着波的入射角和频率的改变,在每一点都会产生不同的模态结构。文献《josephl.rose(1999)ultrasonicwavesinsolidmedia.cambridgeuniversitypress》(固体中的超声波)中描述了rayleigh-lamb频率方程的推导过程,利用此方程可以确定板内传播的特定频率(或频厚积)的导波的传播速度。然而在不均匀截面板中的传播的导波,频厚积随着截面的变化发生变化,因此在计算导波由激励换能器到感应换能器的飞行时间(tof),需要在考虑频厚积的变化对导波传播速度的影响。

兰姆波在板壳结构中传播遇到缺陷会产生反射、散射、投射等现象。基于兰姆波的的损伤检测将结构无缺陷时提取的响应信号作为基准信号,将当前结构提取的信号作为检测信号。为了避免提取缺陷散射的波信号的tof,通过对一条传感路径所采集的基准信号与检测信号尽心相关性分析来校对该条传感路径的损伤指数(di)。结合传感网络中所有传感路径所校对的di,利用加权分布成像算法可以实现对传感网络所包围的区域的无损检测。《zhaox,qiant,meig,etal.activehealthmonitoringofanaircraftwingwithanembeddedpiezoelectricsensor/actuatornetwork:ii.wirelessapproaches.smartmaterialandstructures.200716(4).1218-1225》(利用嵌入式压电传感器网络实现对飞行器机翼的自主式健康监测:ii.无线方法)和文献《haytr,royerrl,gaoh,etal.acomparisonofembeddedsensorlambwaveultrasonictomographyapproachesformateriallossdetection.smartmaterialandstructures.200615(4).946-951》(用于诊断材料损失的嵌入式传感兰姆波的超声成像方法对比)。这种方法在均匀截面板中能够自主地对结构内部的损伤进行实时在线监测,并获得了良好的精度。该方法中的权分布函数在离散损伤指数di的时候不依赖于结构的变化,只针对均匀截面的板壳结构合理有效。因此当板壳结构是不均匀截面板的时候,传统方法中权分布函数并没有考虑到截面厚度变化引起的波的传播过程的影响,此时会引起损伤检测精度的降低和定位误差增大,无法满足实时性和在线性的要求。



技术实现要素:

针对现有技术中的缺陷,本发明的目的是提供一种基于兰姆波的不均匀截面结构损伤识别成像方法及系统。

根据本发明提供的一种基于兰姆波的不均匀截面结构损伤识别成像方法,包括:

传感网络构建步骤:将换能器固定在待检测板壳结构的表面,或镶嵌于待检测板壳结构内部,每对换能器以一发一收的方式设置,组成一条激励-感应信号的传感路径,由传感路径构成传感网络,所覆盖的待检测板壳结构的区域为检测区域;

传感路径构的损伤指数校对步骤:对第n条传感路径而言,通过无缺陷基准信号的波形cn(t)与有缺陷的检测响应信号rn(t)的反相关性来校对该条传感路径的损伤指数为:其中:t为采样时间点,t0为采样时间的起始点,t1为采样时间的终止点,n为传感路径的序号1≤n≤n,n为传感路径的总数;

损伤影响程度判定步骤:把所有传感路径所校对的损伤指数中最大值按照设定的比例设定为阈值,当一条传感路径的损伤指数大于所述阈值的时候,推断该条传感路径被损伤影响,否则该条传感路径未受到损伤影响,损伤指数设置为0;

损伤坐标点概率计算步骤:根据所在传感路径的截面变化特征设定概率分布函数,称为结构权函数wn[bn(x,y)],进而得到损伤出现在坐标点(x,y)的概率值。

较佳的,所述换能器采用楔形块状或薄片状的压电陶瓷材料制成。

较佳的,所述传感路径为一条长度为激励换能器到感应换能器之间的距离的直线。

较佳的,所述传感网络根据待检测板壳结构中所需要的检测区域来布置换能器,所构建的传感网络覆盖整个所需要的检测区域。

较佳的,所述损伤坐标点概率计算步骤具体包括:

对于第n条传感路径,兰姆波由激励位置经到坐标点(x,y)到达响应位置的传播时间trn与兰姆波由激励位置直达响应位置的传播时间tn的关系为:其中:坐标点(x,y)为检测区域内的坐标点,对于边长为a的正方形检测区域而言,-a≤x,y≤a;结构权函数wn[bn(x,y)]与坐标点(x,y)的关系为:其中:α决定第n条传感路径影响区域的范围,0.015≤α≤0.15,n为传感路径的序号,1≤n≤n,n为传感路径的总数;

计算损伤出现在坐标点(x,y)处的概率值:

把计算得到的概率值经正则化后得到概率分布图像,表明损伤出现的概率,其中:概况值最大的坐标点为损伤的中心位置坐标,进而实现损伤的成像和定位的目的。

根据本发明提供的一种基于兰姆波的不均匀截面结构损伤识别成像系统,包括:

传感网络构建模块:将换能器固定在待检测板壳结构的表面,或镶嵌于待检测板壳结构内部,每对换能器以一发一收的方式设置,组成一条激励-感应信号的传感路径,由传感路径构成传感网络,所覆盖的待检测板壳结构的区域为检测区域;

传感路径构的损伤指数校对模块:对第n条传感路径而言,通过无缺陷基准信号的波形cn(t)与有缺陷的检测响应信号rn(t)的反相关性来校对该条传感路径的损伤指数为:其中:t为采样时间点,t0为采样时间的起始点,t1为采样时间的终止点,n为传感路径的序号1≤n≤n,n为传感路径的总数;

损伤影响程度判定模块:把所有传感路径所校对的损伤指数中最大值按照设定的比例设定为阈值,当一条传感路径的损伤指数大于所述阈值的时候,推断该条传感路径被损伤影响,否则该条传感路径未受到损伤影响,损伤指数设置为0;

损伤坐标点概率计算模块:根据所在传感路径的截面变化特征设定概率分布函数,称为结构权函数wn[bn(x,y)],进而得到损伤出现在坐标点(x,y)的概率值。

较佳的,所述换能器采用楔形块状或薄片状的压电陶瓷材料制成。

较佳的,所述传感路径为一条长度为激励换能器到感应换能器之间的距离的直线。

较佳的,所述传感网络根据待检测板壳结构中所需要的检测区域来布置换能器,所构建的传感网络覆盖整个所需要的检测区域。

较佳的,所述损伤坐标点概率计算模块具体包括:

对于第n条传感路径,兰姆波由激励位置经到坐标点(x,y)到达响应位置的传播时间trn与兰姆波由激励位置直达响应位置的传播时间tn的关系为:其中:坐标点(x,y)为检测区域内的坐标点,对于边长为a的正方形检测区域而言,-a≤x,y≤a;结构权函数wn[bn(x,y)]与坐标点(x,y)的关系为:其中:α决定第n条传感路径影响区域的范围,0.015≤α≤0.15,n为传感路径的序号,1≤n≤n,n为传感路径的总数;

计算损伤出现在坐标点(x,y)处的概率值:

把计算得到的概率值经正则化后得到概率分布图像,表明损伤出现的概率,其中:概况值最大的坐标点为损伤的中心位置坐标,进而实现损伤的成像和定位的目的。

与现有技术相比,本发明具有如下的有益效果:

本发明克服了传统检测方法无法精确定位不均匀截面结构板中损伤的缺陷,满足了实时性和在线性的要求,实现不均匀截面板壳结构的自主式的无损检测,在航空航天船舶及建筑等领域具有非常重要的实用价值。

附图说明

通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:

图1为本发明的流程图;

图2为本发明实施例中带有圆形缺陷的斜面铝板及其识别流程示意图;

图3为本发明实施例所构建的传感网络的示意图;

图4为本发明构造的概率损伤图;

图5为传统方式构造的概率损伤图。

具体实施方式

下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进。这些都属于本发明的保护范围。

如图1所示,本发明提供的一种基于兰姆波的不均匀截面结构损伤识别成像方法,包括:

传感网络构建步骤:将换能器固定在待检测板壳结构的表面,或镶嵌于待检测板壳结构内部,换能器采用楔形块状或薄片状的压电陶瓷材料制成。每对换能器以一发一收的方式设置,组成一条激励-感应信号的传感路径,传感路径为一条长度为激励换能器到感应换能器之间的距离的直线。由传感路径构成传感网络,所覆盖的待检测板壳结构的区域为检测区域,传感网络根据待检测板壳结构中所需要的检测区域来布置换能器,所构建的传感网络覆盖整个所需要的检测区域。

传感路径构的损伤指数校对步骤:对第n条传感路径而言,通过无缺陷基准信号的波形cn(t)与有缺陷的检测响应信号rn(t)的反相关性来校对该条传感路径的损伤指数为:其中:t为采样时间点,t0为采样时间的起始点,t1为采样时间的终止点,取值为响应信号的时间长度,n为传感路径的序号1≤n≤n,n为传感路径的总数;

损伤影响程度判定步骤:把所有传感路径所校对的损伤指数中最大值的80%设定为阈值,当一条传感路径的损伤指数大于阈值的时候,推断该条传感路径被损伤影响,否则该条传感路径未受到损伤影响,损伤指数设置为0;

损伤坐标点概率计算步骤:根据所在传感路径的截面变化特征设定概率分布函数,称为结构权函数wn[bn(x,y)],进而得到损伤出现在坐标点(x,y)的概率值。具体包括:

对于第n条传感路径,兰姆波由激励位置经到坐标点(x,y)到达响应位置的传播时间trn与兰姆波由激励位置直达响应位置的传播时间tn的关系为:其中:坐标点(x,y)为检测区域内的坐标点,对于边长为a的正方形检测区域而言,-a≤x,y≤a;结构权函数wn[bn(x,y)]与坐标点(x,y)的关系为:其中:α决定第n条传感路径影响区域的范围,0.015≤α≤0.15,n为传感路径的序号,1≤n≤n,n为传感路径的总数;

计算损伤出现在坐标点(x,y)处的概率值:

把计算得到的概率值经正则化后得到概率分布图像,表明损伤出现的概率,其中:概况值最大的坐标点为损伤的中心位置坐标,进而实现损伤的成像和定位的目的。

在上述基于兰姆波的不均匀截面结构损伤识别成像方法的基础上,本发明还提供一种基于兰姆波的不均匀截面结构损伤识别成像系统,包括:

传感网络构建模块:将换能器固定在待检测板壳结构的表面,或镶嵌于待检测板壳结构内部,换能器采用楔形块状或薄片状的压电陶瓷材料制成。每对换能器以一发一收的方式设置,组成一条激励-感应信号的传感路径,传感路径为一条长度为激励换能器到感应换能器之间的距离的直线。由传感路径构成传感网络,所覆盖的待检测板壳结构的区域为检测区域,传感网络根据待检测板壳结构中所需要的检测区域来布置换能器,所构建的传感网络覆盖整个所需要的检测区域。

传感路径构的损伤指数校对模块:对第n条传感路径而言,通过无缺陷基准信号的波形cn(t)与有缺陷的检测响应信号rn(t)的反相关性来校对该条传感路径的损伤指数为:其中:t为采样时间点,t0为采样时间的起始点,t1为采样时间的终止点,取值为响应信号的时间长度,n为传感路径的序号1≤n≤n,n为传感路径的总数;

损伤影响程度判定模块:把所有传感路径所校对的损伤指数中最大值的80%设定为阈值,当一条传感路径的损伤指数大于阈值的时候,推断该条传感路径被损伤影响,否则该条传感路径未受到损伤影响,损伤指数设置为0;

损伤坐标点概率计算模块:根据所在传感路径的截面变化特征设定概率分布函数,称为结构权函数wn[bn(x,y)],进而得到损伤出现在坐标点(x,y)的概率值。具体包括:

对于第n条传感路径,兰姆波由激励位置经到坐标点(x,y)到达响应位置的传播时间trn与兰姆波由激励位置直达响应位置的传播时间tn的关系为:其中:坐标点(x,y)为检测区域内的坐标点,对于边长为a的正方形检测区域而言,-a≤x,y≤a;结构权函数wn[bn(x,y)]与坐标点(x,y)的关系为:其中:α决定第n条传感路径影响区域的范围,0.015≤α≤0.15,n为传感路径的序号,1≤n≤n,n为传感路径的总数;

计算损伤出现在坐标点(x,y)处的概率值:

把计算得到的概率值经正则化后得到概率分布图像,表明损伤出现的概率,其中:概况值最大的坐标点为损伤的中心位置坐标,进而实现损伤的成像和定位的目的。

如图2所示,取一个带有直径为5mm通孔的斜面铝板试件(650mm×650mm),厚度由7.5mm(y=0)线性变化至3mm(y=650)。选用压电陶瓷应变片作为激励与感应波信号的换能器。选用汉宁窗调制的中心频率为210khz的7周期正弦调幅脉冲最为激励信号来验证本发明识别不均匀截面板壳结构损伤的有效性。

(1)构建传感网络:

压电应变片被固定在铝板表明,每两个验电应变片组成一条“激励-感应”波信号的传感路径,传感路径的编号和各自所对应的压电激励-感应应变片在表1中列出。本实例共选用56条传感路径,构成一个传感网络,覆盖整个面积为450mm×450mm的正方形检测区域,如图3所示。

表1传感器路径详情

(2)校对传感网络中各条传感路径的基于时间逆转的损伤指数(di)。

(3)设定阈值:

对于每一种激励情况,所校对的di最大值的80%被设置为阈值。根据此阈值推断出哪些被损伤严重影响的传感路径,相应的di值被代入下面的结构权函数成像算法中,用于评估损伤存在的概率。

(4)定义结构权函数:

根据斜面板的厚度变化,第n条传感路径所在位置及铝板的频散曲线,获得结构权函数。其中结构权函数的影响区域α设置为1.2,即为直达传感路径的波传播时间的1.2倍。

(5)根据结构权函数分布成像算法评估损伤出现的概率值:

利用(4)中所确定的结构权函数,评估损伤出现在每一条传感路径影响区域中的概率值,然后将每一条传感路径影响区域中的概率值进行叠加,获得传感网络所包围的检测区域中的每一个离散坐标上的概率值。图4、图5分别展现了根据本发明权函数构造的概率图像及传统权函数构造的概率图像。

在每一个概率图像中,都将实际损伤的中心位置表示为“×”,被识别的中心位置表示为“。”。表格2列出了别识别的中心位置坐标和他们相对实际中心位置的距离,由此可知,本发明结构权函数分布成像算法可以有效提高损伤定位的精度,适用于不均匀截面板的实时在线损伤检测领域。

表2两种权函数分布成像算法结果(单位:mm)

本领域技术人员知道,除了以纯计算机可读程序代码方式实现本发明提供的系统及其各个装置、模块、单元以外,完全可以通过将方法步骤进行逻辑边长来使得本发明提供的系统及其各个装置、模块、单元以逻辑门、开关、专用集成电路、可边长逻辑控制器以及嵌入式微控制器等的形式来实现相同功能。所以,本发明提供的系统及其各项装置、模块、单元可以被认为是一种硬件部件,而对其内包括的用于实现各种功能的装置、模块、单元也可以视为硬件部件内的结构;也可以将用于实现各种功能的装置、模块、单元视为既可以是实现方法的软件模块又可以是硬件部件内的结构。

以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1