一种微机械陀螺实时自动模态匹配方法与流程

文档序号:19080436发布日期:2019-11-08 22:18阅读:658来源:国知局
一种微机械陀螺实时自动模态匹配方法与流程

本发明涉及微机械陀螺,尤其涉及一种微机械陀螺实时自动模态匹配方法。



背景技术:

微机械陀螺有质量小、体积小、低功耗、成本低、稳定性高、可批量生产等特点,应用前景广泛。在工业控制、航空航天、汽车、消费电子、军事等领域中微机械陀螺仪均有很好的应用。随着mems技术的进一步发展,微机械陀螺仪也得到了很大的发展。

微机械陀螺由驱动模态和检测模态组成,利用两个模态间的柯氏耦合引起的能量转移这一原理实现角速度检测。如果陀螺的两个模态的谐振频率相同(也就是达到模态匹配)时,微机械陀螺的灵敏度最大化,从而极大提高陀螺的信噪比,提高测量精度。然而微机械陀螺的制造工艺尚未完善,在实际上并不能保证结构的频率均匀性。目前模态匹配的方法主要有机械修调以及静电调节等两种方法,主要细分为利用激光来去除多余的质量达到频率的一致性、利用静电调谐产生静电等效刚度实现匹配的模态。一般来说,静电调谐的方法更便捷和普适性,在微机械陀螺中受到广泛应用。静电调谐实现模态匹配有初始模态匹配和实时自动匹配等几种方法。由于微机械陀螺在实际工作环境中其谐振频率会随外界的温度、湿度等环境因素而发生变化,初始模态匹配技术无法保持匹配的状态,因此实时模态匹配技术是提高微机械陀螺模态匹配精度的关键技术。



技术实现要素:

本发明的目的是克服现有技术的不足,提供一种微机械陀螺实时自动模态匹配技术

本发明的具体方案如下:

一种微机械陀螺实时自动模态匹配方法包括如下步骤:

1)角速度控制模块的输出信号、正交误差控制模块的输出信号、摄动信号共同输入到反馈静电电压产生模块,得到反馈电压施加到微机械陀螺的反馈力输入端;

2)微机械陀螺的位移输出端的信号作为位移信号提取模块的输入信号,位移信号提取模块的输出信号作为角速度控制模块、正交误差模块和模态匹配模块的输入信号;

3)模态匹配模块对位移信号提取模块的输出信号进行上边带相位与下边带相位的求取,所得相位之和的二分之一与固定参考相位进行闭环控制得到调谐电压从而实现自动实时模态匹配;模态匹配模块的输出信号作为调谐电压施加到微机械陀螺的调谐端。

作为本发明的优选方案,所述的摄动信号为正弦形式,频率ωp大于4-5倍系统带宽。

作为本发明的优选方案,所述的模态匹配模块包含上边带相位提取模块、下边带相位提取模块和模态匹配调节器,模态匹配模块的输入信号通过上边带相位提取模块得到上边带相位,通过下边带相位提取模块得到下边带相位,上边带相位与下边带相位作为模态匹配调节器的输入信号,模态匹配调节器的输出信号就是模态匹配模块的输出信号。

作为本发明的优选方案,所述的上边带相位提取是指以上边带混频频率的上边带同相解调滤波和上边带正交解调滤波,并通过反正切运算得到上边带相位,下边带相位提取是指以下边带混频频率的下边带同相解调滤波和下边带正交解调滤波,并通过反正切运算得到下边带相位。

作为本发明的优选方案,所述的模态匹配调节器将固定参考相位与上下边带相位之和的二分之一相减得到的差值,输入给比例-积分-微分作用器进行闭环控制得到模态匹配调节器的输出信号。

作为本发明的优选方案,所述的上边带混频频率为微机械陀螺驱动频率与摄动信号频率的之和,下边带混频频率为微机械陀螺驱动频率与摄动信号频率的之差。

作为本发明的优选方案,所述的固定参考相位为陀螺模态匹配条件下的谐振相位。

本发明与现有技术相比具有的有益效果是:

1)本发明提出的基于外加摄动信号的相位信息进行自动模态匹配的方法,可以解决现有利用摄动信号的幅度信息来进行模态匹配信号控制方法中的延迟相位对解调幅度造成的闭环控制影响,本发明利用上边带相位和下边带相位的平均相位进行相位闭环控制实现实时模态匹配,可以最小化由非理想相位造成的匹配精度的误差。

2)不同于现有实时自动匹配的模态匹配和角速度测量合并同一个环路的方法,本发明利用施加系统带宽外的摄动信号,在原有的工作环路基础上增加模态匹配环路实现摄动信号与系统信号的通道分离,能根据设定的闭环控制参考值进行实时自动模态匹配,能有效解决固有的加工误差和温度等环境因素导致的模态失配问题。

附图说明

图1是一种微机械陀螺的实时自动模态匹配技术的实现框图;

图2是本发明的反馈静电电压产生模块的一种实例图;

图3是本发明的位移信息提取模块的一种实例图;

图4是本发明的模态匹配模块的实现框图;

图5是本发明的上边带相位提取的实现框图;

图6是本发明的下边带相位提取的实现框图;

图7是本发明的模态匹配调节器的实现框图;

图8是陀螺的检测模态的谐振相位频谱图。

具体实施方式

一种微机械陀螺实时自动模态匹配技术,其特征在于包含可调谐微机械陀螺、反馈静电电压产生模块、位移信号提取模块、角速度控制模块、正交误差控制模块、模态匹配模块,在反馈静电电压产生模块施加摄动信号,利用模态匹配模块对位移信号提取模块的输出信号进行上边带相位与下边带相位的求取,所得相位之和的二分之一与固定参考相位进行闭环控制得到调谐电压从而实现自动实时模态匹配,且避免了微机械陀螺电路的相位波动对模态匹配精度的影响。

如图1所示,一种微机械陀螺实时自动模态匹配技术实现的具体步骤如下:

1)角速度控制模块的输出信号、正交误差控制模块的输出信号和频率远大于陀螺系统带宽的摄动信号共同输入到反馈静电电压产生模块。一般加入的摄动信号为正弦形式频率ωp大于4-5倍系统带宽,即满足频率远大于系统带宽的要求。如图2所示为反馈静电电压模块的一种实例形式,将正交误差控制模块的输出信号和摄动信号相加并与余弦cos(ωdt)相乘实现余弦调制,将角速度控制模块的输出信号与正弦sin(ωdt)相乘实现正弦调制,将余弦调制的信号和正弦调制的信号相加作为静电反馈电压,施加到微机械陀螺的反馈力输入端;

2)如图3所示,微机械陀螺的位移信息提取模块的一种实例形式,可实现微机械陀螺的位移-电容-电压的转化。微机械陀螺的位移输出端产生位移信号输入给位移信息提取模块后通过电容敏感结构转变为电容信号cs,电容信号被高频载波cos(ωct)调制到高频来避免低频噪声,由运算放大器电路以及外围的电阻电容组成的高通滤波器将高频载波调制后的电容信号转化为高频电压信号,再经过载波解调的频谱搬移实现高频电压信号转化为基频(驱动频率)附近的位移信号提取模块的输出电压信号,输出电压信号作为角速度控制模块、正交误差模块和模态匹配模块的输入信号;

3)角速度控制模块的输出信号作为外界角速度的测量值,正交误差模块将得到陀螺的正交误差信号的大小,同时角速度控制模块的输出信号和正交误差模块的信号将被输入至反馈静电电压产生模块模从而综合成陀螺的反馈信号,模态匹配模块的输出信号作为调谐电压施加到微机械陀螺的调谐端。

对于可调谐微机械陀螺的检测模态,其传递函数可写为:

其中ms为陀螺检测模态质量块的质量,δs为陀螺检测模态的阻尼比,ωs为陀螺检测模态的固有谐振频率。当陀螺检测模态处于闭环控制时候,即处在角速度控制模块和正交误差模块的反馈作用下,可以认为陀螺检测模态的外界柯氏力和正交误差力已经被反馈力抵消了,那么因此陀螺检测模态的输入力只考虑前述施加的摄动信号的作用,因此可以假设陀螺检测模态的位移输出端的输出位移形式为:

其中yd+p为上边带振动幅度,yd-p为下边带振动幅度,为上边带振动相位,为下边带振动相位,ωd为微机械陀螺的驱动频率,ωp为外加的摄动信号频率,ωd+ωp为上边带混频频率,ωd-ωp为下边带混频频率。

如图4所示,模态匹配模块由上边带相位提取、下边带相位提取、模态匹配调节器组成,模态匹配模块的输入信号分别同时经过上边带相位提取和下边带相位提取得到上边带相位和下边带相位,上边带相位和下边带相位作为模态匹配调节器的输入信号。

如图5所示,所述的上边带相位提取是对模态匹配模块的输入信号分别进行上边带同相解调和低通滤波得到上边带同相直流分量,和上边带正交解调和低通滤波得到上边带正交直流分量,将上边带正交直流分量比上边带同向直流分量的商求取反正切三角函数值,即得到上边带相位,所述的上边带同相解调和上边带正交解调信号一般为正余弦形式,其频率为驱动频率与摄动信号频率之和的上边带混频频率。据此,所示的上边带相位提取的信号流可以简述为如下公式:

上边带同向直流分量id+p

上边带正交直流分量qd+p

上边带相位

其中,k1为上边带相位提取中引入的增益。

如图6所示,所述的下边带相位提取是对模态匹配模块的输入信号分别进行下边带同相解调和低通滤波得到下边带同相直流分量,和下边带正交解调和低通滤波得到下边带正交直流分量,将下边带同相直流分量比下边带正交分量的商求取反正切三角函数值,即得到下边带相位,所述的下边带同相解调和下边带解调信号一般为正余弦形式,其频率为驱动频率与摄动信号频率之差的下边带混频频率。

下边带同向直流分量id-p

下边带正交直流分量qd-p

下边带相位

其中,k2为下边带相位提取中引入的的增益。

如图7所示,所述的模态匹配调节器将输入的上边带相位和下边带相位进行平均运算得到相位平均值,固定参考相位为陀螺检测模态匹配时候的谐振相位,通常选取为-90°,将固定参考相位与相位平均值的差值作为比例-积分-微分作用器的输入进行闭环控制,得到的模态匹配调节器的输出信号就是模态匹配所需的调谐电压,将此调谐电压施加到微机械陀螺的调谐端。

如图8所示,该图为陀螺检测模态的谐振相位-频率曲线,通常情况下模态匹配时谐振相位可以被认为是-90°,分别考虑驱动频率ωd0与检测谐振频率ωs的三种频率关系(ωs=ωd0–δω、ωs=ωd0、ωs=ωd0+δω,δω表示模态频率差)时的实时自动匹配的过程。当微机械陀螺的检测模态的谐振频率等于驱动频率(ωs=ωd0)时,模态匹配模块中的上边带相位(频率ωd0+ωp在相位曲线上对应的相位值,下同)与下边带相位(ωd0-ωp在相位曲线上对应的相位值,下同)和的二分之一恰好等于-90°。当微机械陀螺的检测模态的谐振频率小于驱动频率(ωs=ωd0–δω)时,模态匹配模块中的上边带相位与下边带相位和的二分之一小于-90°,模态匹配模块输出的调谐信号将使得微机械陀螺的谐振频率增大,从而达到匹配状态。当微机械陀螺的检测模态的谐振频率大于驱动频率(ωs=ωd0+δω)时,模态匹配模块中的上边带相位与下边带相位和的二分之一大于-90°,模态匹配模块输出的调谐信号将使得微机械陀螺的谐振频率减小,从而达到匹配状态。因此,本技术手段能自动实时地实现并且保持微机械陀螺模态匹配的状态。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1