一种用于预测路面结构疲劳损伤的系统及方法与流程

文档序号:28747705发布日期:2022-02-07 23:44阅读:244来源:国知局
一种用于预测路面结构疲劳损伤的系统及方法与流程

1.本发明涉及道路工程技术领域,具体涉及一种用于预测路面结构疲劳损伤的系统及方法。


背景技术:

2.高速公路网对于社会的经济发展具有至关重要的作用,我国已经建成全球规模最大的高速公路网,以“智慧的车”和“聪明的路”为主要特征的智慧高速公路建设作为公路交通行业转型发展的重大需求,是我国从交通大国发展为交通强国的必由之路。路面服役性能监测作为智慧高速公路建设的关键环节,现阶段对于高速公路路面服役性能的监测尚停留在通过布设监测设备采集路面车速、轴载、温度等路面参数,并未利用路面参数对高速公路的路面疲劳损伤进行预测,实现对高速公路路面疲劳损伤情况的预警,致使海量路面监测数据闲置,无法发挥路面监测的作用以及对路面疲劳损伤情况的预测,从而无法为高速公路的路面养护提供科学依据。


技术实现要素:

3.本发明旨在解决上述问题,提供了一种用于预测路面结构疲劳损伤的系统及方法,通过综合高速公路路面结构的交通轴载、内部温度和层底应变,建立路面结构裂缝发展预测模型,提前确定路面结构因疲劳损伤所产生裂缝的发展情况,实现了对路面结构疲劳损伤情况的预测,为路面结构的养护维修提供了依据。
4.为实现上述目的,本发明采用如下技术方案:一种用于预测路面结构疲劳损伤的系统,包括交通轴载测量装置、路面结构力学响应测量装置、路面结构温度测量装置、裂缝测量装置和路面数据处理装置;所述交通轴载测量装置埋设于路面结构的沥青层顶部,用于采集高速公路上行驶车辆的车型、车速和轴载数据;所述路面结构力学响应测量装置埋设于路面结构的沥青层底部,用于测量路面结构各结构层的层底应变;所述路面结构温度测量装置埋设于路面结构各结构层中,用于测量路面结构各结构层的内部温度;所述裂缝测量装置设置于路面结构上方,用于测量路面结构中裂缝的长度和宽度;所述路面数据处理装置分别与交通轴载测量装置、路面结构力学响应测量装置、路面结构温度测量装置、裂缝测量装置相连接,用于接收交通轴载测量装置、路面结构力学响应测量装置、路面结构温度测量装置和裂缝测量装置的测量数据,预测路面结构的疲劳损伤。
5.优选地,所述路面结构力学响应测量装置为呈阵列分布的沥青应变计。
6.优选地,所述路面结构温度测量装置设置为温度传感器,所述裂缝测量装置设置
为高分辨率摄像仪。
7.一种用于预测路面结构疲劳损伤的方法,采用如上所述的用于预测路面结构疲劳损伤的系统,具体包括如下步骤:步骤1,选取待预测的沥青路面,根据待预测沥青路面的路面参数,制备沥青混合料试样;步骤2,利用材料试验机对沥青混合料试样进行单轴压缩动态模量试验,测量在不同试验温度和加载频率条件下沥青混合料试样各结构层的动态模量,基于时温等效原理建立沥青混合料动态模量主曲线,确定沥青混合料动态模量计算模型,如式(1)所示:
ꢀꢀꢀꢀꢀꢀ
(1)其中,
ꢀꢀ
(2)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(3)式中,为沥青混合料的动态模量,单位为mpa;为加载频率,单位为hz;为沥青混合料的温度,单位为℃;为沥青混合料的最大限制模量,单位为mpa;、、、均为模型系数;为沥青混合料的矿料间隙率,单位为%;为沥青混合料的沥青饱和度,单位为%;步骤3,安装用于预测路面结构疲劳损伤的系统,设置观测期时长,在观测期内利用路面结构温度测量装置测量沥青层各结构层的内部温度,利用交通轴载测量装置测量车辆作用在路面结构上的车速和轴载,利用路面结构力学响应测量装置测量车辆载荷作用下沥青层的层底应变,利用裂缝测量装置测量路面结构表面裂缝的长度和宽度;步骤4,交通轴载测量装置记录到观测期内路面结构上总计通过次行车荷载,针对各次行车荷载,根据行车荷载通过路面结构时的车速,计算路面结构上车辆的加载频率,如式(4)所示:
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(4)式中,为加载频率,单位为hz;为沥青路面中沥青层的厚度,单位为m;为沥青路面上车辆的车速,单位为;再通过将路面结构上车辆的加载频率与沥青层中各结构层的内部温度相结合,
利用沥青混合料动态模量计算模型,确定行车荷载通过路面结构时沥青层中各结构层的沥青混合料动态模量,将沥青层中各结构层的沥青混合料动态模量输入力学计算软件bisar3.0中,基于弹性层状理论体系计算得到行车荷载通过路面结构时沥青层层底应变的计算值,确定观测期内各次行车荷载通过路面结构时沥青层层底应变的计算值;根据路面结构力学响应测量装置获取观测期内各次行车荷载通过路面结构时沥青层层底应变的实测值,利用观测期内各次行车荷载通过路面结构时沥青层层底应变的实测值对计算值进行标定,确定沥青层的层底应变标定系数;步骤5,建立路面结构疲劳损伤模型,根据观测期内各次行车荷载通过路面结构时沥青层层底应变的计算值,利用路面结构疲劳损伤模型计算观测期内路面结构沥青层的总损伤,如式(5)所示:
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(5)其中,
ꢀꢀ
(6)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(7)式中,为观测时间内路面结构沥青层的总损伤;为观测时间内行车荷载通过路面结构的次数;为第次行车荷载通过时路面结构沥青层的损伤;为第次行车荷载通过时路面结构的疲劳寿命;为目标可靠度;为季节性冻土地区调整系数;为沥青层的疲劳加载模式系数;为沥青层层底应变标定系数;为第次行车荷载通过路面结构时沥青层层底应变的计算值;为沥青层的层底应变标定系数;为温度调整系数;为沥青层的疲劳加载模式系数;为沥青层的厚度,单位为mm;步骤6,根据观测期内路面结构沥青层的总损伤,建立路面结构裂缝计算模型,路面结构裂缝计算模型包括由下至上裂缝计算模型和由上至下裂缝计算模型;由下至上发展裂缝计算模型为:
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(8)其中,
ꢀꢀꢀꢀꢀꢀꢀꢀ
(9)式中,为路面结构中由下至上发展裂缝占路面结构表面积百分比的计算值;和均为模型系数;为观测时间内路面结构沥青层的总损伤;为沥青层的厚度,单位为mm;由上至下发展裂缝计算模型为:
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(10)式中,为路面结构中由上至下发展裂缝占路面结构长度百分比的计算值;根据观测期内路面结构沥青层的总损伤,利用路面结构裂缝计算模型,确定路面结构中由下至上发展裂缝占路面结构表面积百分比的计算值和由上至下发展裂缝占路面结构长度百分比的计算值;步骤7,根据观测期内裂缝测量装置测量的路面结构裂缝状态,确定观测期内路面结构中由下至上发展裂缝占路面结构表面积百分比的实测值和由上至下发展裂缝占路面结构长度百分比的实测值,利用路面结构中由下至上发展裂缝占路面结构表面积百分比的实测值对由下至上发展裂缝占路面结构表面积百分比的计算值进行拟合,得到裂缝面积标定系数,再利用由上至下发展裂缝占路面结构长度百分比的实测值对由上至下发展裂缝占路面结构长度百分比的计算值进行拟合,得到裂缝长度标定系数;根据裂缝面积标定系数和裂缝长度标定系数,结合路面结构裂缝计算模型,建立路面结构裂缝发展预测模型,路面结构裂缝发展预测模型包括由下至上发展裂缝预测模型和由上至下发展裂缝预测模型;由下至上发展裂缝预测模型为:
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(11)其中,
ꢀꢀꢀꢀꢀꢀꢀꢀ
(12)式中,为路面结构中由下至上发展裂缝占路面结构表面积百分比的预测值;由上至下发展裂缝预测模型为:
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(13)式中,为路面结构中由上至下发展裂缝占路面结构长度百分比的预测值;步骤8,观测结束后,利用路面数据处理装置获取交通轴载测量装置和路面结构温度测量装置的实时测量数据,基于路面结构裂缝发展预测模型,计算路面结构中由下至上发展裂缝占路面结构表面积百分比的预测值和由上至下发展裂缝占路面结构长度百分比的预测值,得到未来路面结构中裂缝的发展情况。
8.优选地,所述路面结构包括沥青层、粒料层和基层,沥青层中包含多个结构层,由上到下依次为上面层、中面层和下面层。
9.优选地,所述路面参数包括沥青层的厚度、目标可靠度、温度调整系数、季节
性冻土地区调整系数以及沥青层中各结构层的厚度、沥青混合料的矿料间隙率和沥青混合料的沥青饱和度。
10.优选地,所述步骤2中,将试验温度分别设置为20℃、35℃和50℃,在各试验温度条件下依次测量加载频率为0.1hz、0.2hz、0.5 hz、1 hz、2 hz、5 hz、10 hz、20 hz、25 hz时沥青混合料试样中各结构层的动态模量。
11.本发明所带来的有益技术效果:本发明提出了一种用于预测路面结构疲劳损伤的系统,实现了对观测期内路面结构上行车荷载情况、内部温度和沥青层层底应变的实时监测,为准确确定路面结构中沥青层的总疲劳损伤提供了大量的实测数据,提高了沥青层总疲劳损伤计算的准确性。
12.本发明还提出了一种用于预测路面结构疲劳损伤的方法,配合用于预测路面结构疲劳损伤的系统,通过在观测期内实时监测路面结构中行车荷载情况、内部温度和沥青层层底应变,并根据沥青层层底应变计算值与实测值之间的关系标定沥青层层底应变的计算值,准确获得路面结构中沥青层的总疲劳损伤后,建立路面结构裂缝发展预测模型,实现了仅需在路面结构内铺设交通轴载测量装置和路面结构温度测量装置,即可准确预测路面结构疲劳损伤裂缝的发展情况,为高速公路路面结构的维修养护提供了依据,有利于避免高速公路路面的结构性损坏,同时本发明方法通过预测路面结构疲劳损伤裂缝情况能够提前针对路面结构的疲劳损伤做出预警,保障了路面结构上车辆的行车安全。
13.本发明方法通过预测路面结构因疲劳损伤所产生裂缝的发展趋势,及时对路面结构进行维修,避免了路面结构的周期性重建,从而缓解了因路面维修和重建所造成的交通拥堵,保障了路面结构上车辆的顺畅运行。
附图说明
14.图1为本发明实施例中路面结构的示意图。
15.图2为本发明实施例中的沥青混合料动态模量主曲线;图中,sma13曲线为上面层的沥青混合料动态模量主曲线,ac20曲线为中面层的沥青混合料动态模量主曲线,ac25为下面层的沥青混合料动态模量主曲线。
16.具体实施方式
17.下面结合附图与具体实施方式对本发明作进一步详细描述。
18.本实施例以山东济南地区高速公路为例,在高速公路上选取实验路段,实验路段为沥青路面,路面结构如图1所示,采用本发明提出的一种用于预测路面结构疲劳损伤的方法预测实验路段路面结构的疲劳损伤,具体包括以下步骤:步骤1,获取实验路段的路面参数,实验路面的路面结构由上到下依次设置为沥青层、粒料层和基层,沥青层厚度为180mm,粒料层设置为34cm级配碎石。沥青层由上到下依次设置为上面层、中面层和下面层,其中,上面层厚度为40mm,采用sma13铺设而成,沥青混合料的沥青饱和度为65%、矿料间隙率为15.5%;中面层厚度为60mm,采用ac20铺设而成,沥青混合料的沥青饱和度为63%、矿料间隙率为15.3%;下面层厚度为80mm,采用ac25铺设而成,沥青混合料的沥青饱和度为67%、矿料间隙率为15.7%;路面结构的目标可靠度为
1.65,温度调整系数为2.38,季节性冻土地区调整系数为0.85。
19.根据实验路段的路面参数,制备沥青混合料试样,利用沥青混合料试样代替实际路面结构进行单轴压缩动态模量试验。
20.步骤2,在实验室内利用材料试验机对沥青混合料试样进行单轴压缩动态模量试验,分别设置试验温度为20℃、35℃和50℃,在各温度条件下依次将材料试验机的加载频率调整为0.1hz、0.2hz、0.5 hz、1 hz、2 hz、5 hz、10 hz、20 hz和25 hz,分别测量加载频率为0.1hz、0.2hz、0.5 hz、1 hz、2 hz、5 hz、10 hz、20 hz、25 hz时沥青混合料试样沥青层中各结构层的动态模量,测量结果如表1所示。
21.表1 单轴压缩动态模量试验测量结果基于时温等效原理,针对沥青混合料试样沥青层的各结构层,分别对不同温度条件下沥青混合料试样的加载频率和动态模量进行拟合,建立沥青混合料动态模量主曲线,如图2所示。
22.根据沥青混合料动态模量主曲线,得到沥青层中各结构层沥青混合料动态模量计算模型,如下所示:沥青层中上面层的沥青混合料动态模量计算模型为:
ꢀꢀꢀꢀ
(14)式中,为上面层的沥青混合料动态模量,单位为mpa;为加载频率,单位为hz; 为上面层的温度,单位为℃;沥青层中中面层的沥青混合料动态模量计算模型为:
ꢀꢀꢀꢀ
(15)式中,为中面层的沥青混合料动态模量,单位为mpa;为加载频率,单位为hz;为中面层的温度,单位为℃;沥青层中下面层的沥青混合料动态模量计算模型为:
ꢀꢀꢀꢀ
(16)式中,为下面层的沥青混合料动态模量,单位为mpa;为加载频率,单位为hz;为下面层的温度,单位为℃。
23.由于实际沥青路面的加载频率由路面结构上的行车荷载所产生,因此,利用路面结构上行驶车辆的车速可以确定行车荷载作用在路面结构上的加载频率,从而仅需根据行驶于路面结构车辆的车速和沥青层中各结构层的内部温度,利用沥青混合料动态模量计算模型中,即可确定路面结构沥青层中各结构层的沥青混合料动态模量。
24.步骤3,安装用于预测路面结构疲劳损伤的系统,该系统包括交通轴载测量装置、路面结构力学响应测量装置、路面结构温度测量装置、裂缝测量装置和路面数据处理装置,将裂缝测量装置设置于路面结构的上方,交通轴载测量装置铺设于路面结构沥青层的顶部,路面结构力学响应测量装置铺设于路面结构沥青层的底部,路面结构温度测量装置埋设于路面结构沥青层的各结构层内。本实施例中路面结构温度测量装置为温度传感器、裂缝测量装置为高分辨率摄像仪、路面结构力学响应测量装置为呈阵列分布的沥青应变计,本实施例中设置观测期时长为30天,在观测期内利用路面结构温度测量装置测量沥青层各结构层的内部温度,利用交通轴载测量装置测量车辆作用在路面结构上的车速和
轴载,利用路面结构力学响应测量装置测量车辆载荷作用下沥青层的层底应变,利用裂缝测量装置测量路面结构表面裂缝的长度和宽度。
25.步骤4,交通轴载测量装置记录到观测期内路面结构上总计通过次行车荷载,针对各次行车荷载,分别计算路面结构上车辆的加载频率,再通过将路面结构上车辆的加载频率与沥青层中各结构层的内部温度相结合,利用沥青混合料动态模量计算模型,确定行车荷载通过路面结构时沥青层中各结构层的沥青混合料动态模量,通过将沥青层中各结构层的沥青混合料动态模量输入力学计算软件bisar3.0中,基于弹性层状理论体系计算得到行车荷载通过路面结构时沥青层层底应变的计算值,确定观测期内各次行车荷载通过路面结构时沥青层层底应变的计算值。
26.以观测期内某一次行车荷载为例说明确定行车荷载通过路面结构时沥青层层底应变计算值的过程,利用交通轴载测量装置实时测量得到实验路段上车辆的车速为80km/h,同时利用路面结构温度测量装置测量得到沥青层中上面层温度为51℃、中面层温度为48℃、下面层温度为41℃,利用沥青混合料动态模量计算模型计算,得到沥青层中上面层的沥青混合料动态模量为5939mpa、中面层的沥青混合料动态模量为10053mpa、下面层的沥青混合料动态模量为13287mpa,通过将沥青层中各结构层的沥青混合料动态模量输入力学计算软件bisar3.0中,基于弹性层状理论体系,计算得到行车荷载通过路面结构时沥青层层底应变的计算值为72.8με。
27.根据路面结构力学响应测量装置获取观测期内各次行车荷载通过路面结构时沥青层层底应变的实测值,利用观测期内各次行车荷载通过路面结构时沥青层层底应变的实测值对计算值进行标定,以观测期内各次行车荷载通过路面结构时沥青层层底应变的计算值作为横坐标,观测期内各次行车荷载通过路面结构时沥青层层底应变的实测值作为纵坐标,绘制沥青层的层底应变关系曲线,沥青层的层底应变关系曲线的斜率即为沥青层的层底应变标定系数。
28.步骤5,建立路面结构疲劳损伤模型,根据观测期内各次行车荷载通过路面结构时沥青层层底应变的计算值,利用路面结构疲劳损伤模型计算得到观测期内路面结构沥青层的总损伤为。
29.步骤6,根据观测期内路面结构沥青层的总损伤,建立路面结构裂缝计算模型,路面结构裂缝计算模型包括由下至上裂缝计算模型和由上至下裂缝计算模型;由下至上发展裂缝计算模型为:
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(8)其中,
ꢀꢀꢀꢀꢀꢀꢀꢀ
(9)式中,为路面结构中由下至上发展裂缝占路面结构表面积百分比的计算值;为观测时间内路面结构沥青层的总损伤;为沥青层的厚度,单位为mm;本实施例中模型系数、。
30.由上至下发展裂缝计算模型为:
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(10)式中,为路面结构中由上至下发展裂缝占路面结构长度百分比的计算值。
31.根据观测期内路面结构沥青层的总损伤,利用路面结构裂缝计算模型,确定路面结构中由下至上发展裂缝占路面结构表面积百分比的计算值和由上至下发展裂缝占路面结构长度百分比的计算值。
32.步骤7,根据观测期内裂缝测量装置测量的路面结构裂缝状态,确定观测期内路面结构中由下至上发展裂缝占路面结构表面积百分比的实测值和由上至下发展裂缝占路面结构长度百分比的实测值,利用路面结构中由下至上发展裂缝占路面结构表面积百分比的实测值对由下至上发展裂缝占路面结构表面积百分比的计算值进行拟合,得到裂缝面积标定系数,再利用由上至下发展裂缝占路面结构长度百分比的实测值对由上至下发展裂缝占路面结构长度百分比的计算值进行拟合,得到裂缝长度标定系数。
33.根据裂缝面积标定系数和裂缝长度标定系数,结合路面结构裂缝计算模型,建立路面结构裂缝发展预测模型,路面结构裂缝发展预测模型包括由下至上发展裂缝预测模型和由上至下发展裂缝预测模型;由下至上发展裂缝预测模型为:
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(17)其中,
ꢀꢀꢀꢀꢀꢀꢀꢀ
(12)式中,为路面结构中由下至上发展裂缝占路面结构表面积百分比的预测值;由上至下发展裂缝预测模型为:
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(18)式中,为路面结构中由上至下发展裂缝占路面结构长度百分比的预测值。
34.步骤8,观测结束后,利用路面数据处理装置获取交通轴载测量装置和路面结构温度测量装置的实时测量数据,基于路面结构裂缝发展预测模型,计算路面结构中由下至上发展裂缝占路面结构表面积百分比的预测值和由上至下发展裂缝占路面结构长度百分比的预测值,预测得到实验路段路面结构中由下至上发展裂缝占路面结构表面积百分比为6.84,由上至下发展裂缝占路面结构长度百分比为0.56,由此预测了实验路段路面结构中因疲劳损伤所产生裂缝的发展趋势,裂缝的发展趋势体现了路面结构的路面疲劳损伤情况,从而为路面结构疲劳损伤情况的预测和维修养护提供了理论依据,有利于延长高速公路路面结构的使用寿命,保证高速公路的顺利运行。
35.当然,上述说明并非是对本发明的限制,本发明也并不仅限于上述举例,本技术领域的技术人员在本发明的实质范围内所做出的变化、改型、添加或替换,也应属于本发明的保护范围。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1