新能源汽车交联聚乙烯绝缘电力电缆老化状况的测试系统的制作方法

文档序号:30386268发布日期:2022-06-11 10:17阅读:95来源:国知局
新能源汽车交联聚乙烯绝缘电力电缆老化状况的测试系统的制作方法

1.本发明涉及测量电变量技术领域,具体涉及新能源汽车交联聚乙烯绝缘电力电缆老化状况的测试系统。


背景技术:

2.电力电缆是电力输变电中非常重要的设备,它能否可靠运行对电力负荷安全、稳定传输有着制约的作用。新能源汽车交联聚乙烯电缆因其具有极佳的电气性能,在国内外早已得到广泛应用。但新能源汽车交联聚乙烯电缆投入运行后,随着时间的推移,在水分和电场的共同作用下电缆内部会发生物理化学变化,形成水树枝,水树枝可进一步发展成为电树枝,使电缆绝缘性能下降,引发放电事故;因此需要定期对电缆的老化状况进行检测,以减低放电事故发生的可能。现有的对电缆老化情况进行检测的方法是基于人工的方式,这种检测方式的主观性较强,会浪费大量的人工资源,并且还会存在错检、误检等现象,效率较低。


技术实现要素:

3.为了解决现有基于人工方式对电缆老化情况进行检测效率较低的问题,本发明的目的在于提供一种新能源汽车交联聚乙烯绝缘电力电缆老化状况的测试系统,所采用的技术方案具体如下:本发明提供了一种新能源汽车交联聚乙烯绝缘电力电缆老化状况的测试系统,包括存储器和处理器,所述处理器执行所述存储器存储的计算机程序,以实现如下步骤:采集同品牌同批次的多个新能源汽车对应的待检测电缆对应的目标特征,所述目标特征包括甲基基团含量序列、羟基基团含量序列、局部放电电荷量和去极化电流序列;根据各待检测电缆对应的甲基基团含量序列、羟基基团含量序列和局部放电电荷量,计算各待检测电缆对应的健康程度;根据任意两个待检测电缆对应的健康程度、局部放电电荷量和去极化电流序列,计算任意两个待检测电缆之间的老化特征相似程度;根据任意两个待检测电缆之间的老化特征相似程度,计算各待检测电缆对应的老化评价指标。
4.优选的,其特征在于,计算各待检测电缆对应的健康程度的公式为:其中,为第n个待检测电缆对应的降解程度,为第n个待检测电缆对应的甲基基团含量序列的均值,为第n个待检测电缆对应的羟基基团含量序列的均值,为第n个待检测电缆对应的局部放电电荷量,e为自然常数。
5.优选的,所述根据任意两个待检测电缆对应的健康程度、局部放电电荷量和去极
化电流序列,计算任意两个待检测电缆之间的老化特征相似程度,包括:计算各待检测电缆对应的甲基基团含量序列中各元素的平均值,计算各待检测电缆对应的羟基基团含量序列中各元素的平均值;根据各待检测电缆对应的甲基基团含量序列中各元素的平均值和羟基基团含量序列中各元素的平均值,构建各待检测电缆对应的基团含量序列;所述根据任意两个待检测电缆对应的异常程度、基团含量序列、局部放电电荷量和去极化电流序列,计算任意两个待检测电缆之间的老化特征相似程度。
6.优选的,其特征在于,计算任意两个待检测电缆之间的老化特征相似程度的公式为:其中,为第n个待检测电缆与第m个待检测电缆对应的老化特征相似度,为第n个待检测电缆对应的局部放电电荷量,为第m个待检测电缆对应的局部放电电荷量,为第n个待检测电缆对应的健康程度,为第m个待检测电缆对应的健康程度,为第n个待检测电缆对应的去极化电流序列,为第m个待检测电缆对应的去极化电流序列,为第n个待检测电缆对应的基团含量序列,为第m个待检测电缆对应的基团含量序列,为皮尔逊相关系数,为动态时间规整函数,e为自然常数。
7.优选的,其特征在于,根据任意两个待检测电缆之间的老化特征相似程度,计算各待检测电缆对应的老化评价指标,包括:基于任意两个待检测电缆之间的老化特征相似程度和k-m算法,对各待检测电缆进行相似度匹配,得到多个匹配对,所述匹配对包括两个特征最相似的两个待检测电缆;对于任一匹配对:从该匹配对中任选一个待检测电缆,记为代表电缆;根据该代表电缆对应的去极化电流序列,计算该代表电缆对应的去极化电流变化率;计算该代表电缆对应的局部放电电荷量与标准电缆的局部放电电荷量之间的差值的绝对值,得到该代表电缆对应的异常系数;根据该代表电缆对应的去极化电流变化率、异常系数和健康程度,计算该代表电缆对应的老化评价指标;所述该代表电缆对应的老化评价指标为该匹配对中两个待检测电缆对应的老化评价指标。
8.优选的,计算各待检测电缆对应的老化评价指标的公式为:其中,为第i个匹配对对应的代表电缆对应的老化评价指标,为第i个匹配对对应的代表电缆对应的去极化电流变化率,为第i个匹配对对应的代表电缆对应的异常
系数,为第i个匹配对对应的代表电缆对应的健康程度。
9.优选的,计算代表电缆对应的去极化电流变化率的公式为:其中,为代表电缆对应的去极化电流变化率,为代表电缆对应的去极化电流序列,为代表电缆对应的去极化电流序列中去极化电流的最大值,为代表电缆对应的去极化电流序列中去极化电流的最小值,为代表电缆对应的去极化电流趋于平稳时的时间,为代表电缆对应的去极化电流开始变化的时间。
10.本发明具有如下有益效果:本发明首先根据各待检测电缆对应的甲基基团含量序列、羟基基团含量序列和局部放电电荷量,计算各待检测电缆对应的健康程度,然后根据任意两段待检测电缆对应的健康程度、局部放电电荷量和去极化电流序列,计算任意两段待检测电缆之间的老化特征相似程度,最后根据任意两段待检测电缆之间的特征相似程度,计算各待检测电缆对应的老化评价指标。本发明中该系统为电性能的测试系统。本发明利用新能源汽车交联聚乙烯电力电缆的各种目标特征对其的老化情况进行分析,克服了人工方式对电缆老化情况进行检测效率较低的问题,通过自动化的方式提高了对电缆老化情况检测的效率。
附图说明
11.为了更清楚地说明本发明实施例或现有技术中的技术方案和优点,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它附图。
12.图1为本发明所提供的一种新能源汽车交联聚乙烯绝缘电力电缆老化状况的测试系统 的流程图。
具体实施方式
13.为了更进一步阐述本发明为达成预定发明目的所采取的技术手段及功能效果,以下结合附图及较佳实施例,对依据本发明提出的一种新能源汽车交联聚乙烯绝缘电力电缆老化状况的测试系统 进行详细说明如下。
14.除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。
15.下面结合附图具体的说明本发明所提供的一种新能源汽车交联聚乙烯绝缘电力电缆老化状况的测试系统的具体方案。
16.新能源汽车交联聚乙烯绝缘电力电缆老化状况的测试系统的实施例:如图1所示,本实施例的一种新能源汽车交联聚乙烯绝缘电力电缆老化状况的测试系统包括以下步骤:步骤s1,采集同品牌同批次的多个新能源汽车对应的待检测电缆对应的目标特
征,所述目标特征包括甲基基团含量序列、羟基基团含量序列、局部放电电荷量和去极化电流序列。
17.由于水树是诱发电缆老化破坏的主要原因,因此本实施例针对水树的一些特征来对电缆的老化情况进行分析。
18.本实施例首先选择多台同品牌同批次的新能源汽车且各新能源汽车运行里程与运行时间应基本一致,将各新能源汽车中被检测的一段电缆记为待检测电缆,所述各待检测电缆为新能源汽车中相同位置相同长度的一段电缆,本实施例通过对各待检测电缆的老化状况进行分析。
19.本实施例对各待检测电缆的一些目标特征进行提取,这些特征分别是甲基基团含量序列、羟基基团含量序列、局部放电电荷量和去极化电流序列。
20.第一,本实施例对各待检测电缆中甲基基团的含量和羟基基团的含量进行获取,具体为:本实施例利用红外光谱检测来采集各待检测电缆中甲基基团和羟基基团的含量进行采集;由于红外光谱检测是对一根待检测电缆中的各个位置的甲基基团和羟基基团含量进行采集,因此各待检测电缆对应的是甲基基团含量序列和羟基基团含量序列;本实施例对各待检测电缆对应的甲基基团含量序列和羟基基团含量序列进行处理,以得到各待检测电缆中基团含量序列,具体为:计算各待检测电缆对应的甲基基团含量序列中各元素的平均值和羟基基团含量序列中各元素的均值,本实施例将和结合起来得到基团含量序列,记为,其中为第n个待检测电缆对应的甲基基团含量序列,为第n个待检测电缆对应的羟基基团含量序列,为第n个待检测电缆对应的基团含量序列。
21.第二,本实施例对各待检测电缆进行局部放电处理,利用局部放电测量仪来对各待检测电缆的局部放电电荷量进行测量,具体的,先将局部放电测量仪的电压调制21kv,之后以5kv/s的大小逐渐升压至95.3kv,并保持95.3kv电压一定时间不变,进而获得各待检测电缆对应的局部放电电荷量;具体可根据实际需要来选择合适的局部放电电荷量的获取方法。本实施例中利用局部放电测量仪获得对应的局部放电电荷量的过程为现有技术,在此就不再赘述。
22.第三,由于电缆老化程度不同,去极化电流趋于稳定的时间也不同,本实施例利用皮安表对各待检测电缆对应的去极化电流进行采集,由于去极化电流完全是由电缆绝缘中特定松弛机制产生的松弛电流复合而形成,而介质内部的松弛极化现象包含了绝缘材料的状态信息,因此本实施例通过对各待检测电缆去极化电流的测量来反映其内部的老化状况。
23.本实施例以采集任一待检测电缆对应的去极化电流为例:本实施例先对该待检测电缆进行初始测量,将该待检测电缆接入到电路中,电缆体接直流高压电源,另一端接地,初始测量的目的是为了确定电缆在没有充电电压情况下的初始条件,初始条件包括周围环境干扰信号的大小;如果电流振幅过大,则需考虑周围环境是否存在信号干扰。
24.然后将该待检测电缆一端与高压直流电源相连,电路中间加高压限流电阻,以保证充电放电电流在安全范围内,待检测电缆另一端与皮安表相连,中间同样加入高压限流
电阻;本实施例通过计算机对皮安表进行控制;其具体电路可根据需要自行设计。
25.接下来本实施例对待检测电缆充电后,进行瞬间短路,通过皮安表对去极化电流进行测量;本实施例中电流采样频率为3,并记录去极化电流开始变化时的时间刻度和趋于稳定时的时间刻度;本实施例对该待检测电缆的去极化电流测量的是从去极化电流开始变化到去极化电流趋于稳定的过程中的去极化电流,即可以获取到该待检测电缆对应的去极化电流序列。
26.步骤s2,根据各待检测电缆对应的甲基基团含量序列、羟基基团含量序列和局部放电电荷量,计算各待检测电缆对应的健康程度。
27.本实施例根据步骤s1得到了各待检测电缆对应的各种目标特征,接下来,本实施例基于各待检测电缆对应的甲基基团含量序列、羟基基团含量序列和局部放电电荷量对各待检测电缆对应的健康程度进行计算,用于反映各待检测电缆绝缘层的降解程度,即反映对应待检测电缆的老化情况;当健康程度越大时,说明对应的待检测电缆越健康,越不老化。具体计算各待检测电缆对应的健康程度的公式为:其中,为第n个待检测电缆对应的健康程度,为第n个待检测电缆对应的甲基基团含量序列的均值,为第n个待检测电缆对应的羟基基团含量序列的均值,e为自然常数。
28.为第n个待检测电缆对应的局部放电电荷量,本实施例通过对其进行归一化,其值越小,说明绝缘层降解程度越严重,对应的待检测电缆越异常。
29.为用来反应电缆的绝缘性能,的值越大,则认为对应的待检测电缆绝缘层分子结构改变越多,越异常。本实施例利用将其进行归一化,其值越小说明绝缘层降解程度越严重,即待检测电缆越异常。
30.步骤s3,根据任意两个待检测电缆对应的健康程度、局部放电电荷量和去极化电流序列,计算任意两个待检测电缆之间的老化特征相似程度。
31.本实施例结合各待检测电缆对应的健康程度、基团含量序列、局部放电电荷量以及去极化电流序列对取自不同新能源汽车的各待检测电缆进行特征匹配,即将两个最相似的待检测电缆作为一对,进而计算各匹配对中的任意一个待检测电缆的老化程度指标作为对应匹配对中两个待检测电缆的老化程度指标,极大的减少了计算量。
32.本实施例对任意两个待检测电缆的老化特征相似度进行计算的具体公式为:其中,为第n个待检测电缆与第m个待检测电缆对应的老化特征相似度,为第m个待检测电缆对应的局部放电电荷量,为第m个待检测电缆对应的健康程度,为第
n个待检测电缆对应的去极化电流序列,为第m个待检测电缆对应的去极化电流序列,为第n个待检测电缆对应的基团含量序列,为第m个待检测电缆对应的基团含量序列,为皮尔逊相关系数,为动态时间规整函数,e为自然常数。
33.本实施例中由于皮尔森相关系数()可以用来反应两个序列的相似程度;因此本实施例利用ppmcc来对第m个待检测电缆对应的基团含量序列和第n个待检测电缆对应的基团含量序列的相似程度,即。
34.为两个待检测电缆绝缘降解程度的差值,其值域为(0,+∞),本实施例利用对其进行归一化,其值越大,则两个待检测电缆越相似;表示两者去极化电流的相似程度,其值越小,越大。本实施例中当趋近于1时,说明两个待检测电缆的老化情况越相似。
35.本实施例中任意待检测电缆都会与其他的待检测电缆对应一个老化特征相似度,即一个待检测电缆对应多个老化特征相似度。
36.步骤s4,根据任意两个待检测电缆之间的老化特征相似程度,计算各待检测电缆对应的老化评价指标。
37.本实施例根据任意两待检测电缆对应的老化特征相似度,将各待检测电缆进行配对,得到多个匹配对,进而根据各匹配对来评价各待检测电缆对应的老化评价指标,具体的:第一,根据任意两待检测电缆对应的老化特征相似度,对各待检测电缆进行配对。
38.本实施例基于各待检测电缆对应的各老化特征相似度,利用k-m算法对各待检测电缆做最大分配处理,即相似度匹配,得到多个匹配对;本实施例中一个匹配对中有两个待检测电缆,这两个待检测电缆的老化特征是最相似的,即对应的新能源汽车待检测电缆状况是最相似的。本实施例中k-m算法为现有技术,在此就不再赘述。
39.第二,根据多个匹配对来评价各待检测电缆对应的老化情况;本实施例首先从各匹配对中任选一个待检测电缆,记为代表电缆,本实施例利用这些代表电缆来计算所属匹配对对应的老化评价指标,即匹配对中的两个待检测电缆对应的老化评价指标是相同的。本实施例以任一匹配对为例:由于各待检测电缆的老化程度不同,去极化电流趋于平稳的时间也不同,即老化程度越严重,去极化电流趋于平稳的时间越短;本实施例首先根据该匹配对的代表电缆对应的去极化电流序列以及去极化电流趋近于稳定的时间和开始变化的时间,计算了代表电缆对应去极化电流变化率,具体公式为:其中,为该代表电缆对应的去极化电流变化率,为该代表电缆对应的去极化电
流序列,为该代表电缆对应的去极化电流序列中去极化电流的最大值,为该代表电缆对应的去极化电流序列中去极化电流的最小值,为该代表电缆对应的去极化电流趋于平稳时的时间,为该代表电缆对应的去极化电流开始变化的时间。k值越大,说明去极化电流变化率越大,则认为代表电缆的老化越严重,即该匹配对中的两个待检测电缆的老化越严重。
40.本实施例通过计算该代表电缆对应的局部放电电荷量与标准电缆的局部放电电荷量之间的差异来得到代表电缆对应的异常系数,所述标准电缆为新的未老化的电缆,具体公式为:,其中为代表电缆对应的局部放电电荷量,为标准电缆的局部放电电荷量,为代表电缆对应的异常系数。当异常系数越大时,说明该代表电缆对应的局部放电电荷量与标准电缆的局部放电电荷量越大,即该代表电缆越异常。
41.本实施例结合该代表电缆对应的去极化电流变化率、健康程度以及异常系数,来对该代表电缆对应的老化程度的进行评价,即得到对应的老化评价指标;本实施例中该匹配对的两个待检测电缆的老化特征相似度是最大的,所以计算其中任意一个待检测电缆的老化程度指标可以代表该匹配对整体的老化程度指标(即对应的代表电缆),减少了计算量。本实施例中计算老化程度指标的公式为:其中,为第i个匹配对对应的代表电缆对应的老化评价指标,为第i个匹配对对应的代表电缆对应的去极化电流变化率,为第i个匹配对对应的代表电缆对应的异常系数,为第i个匹配对对应的代表电缆对应的健康程度。
42.上式中,当去极化电流变化率越大时,老化评价指标越小,即老化程度越严重;当异常系数越大时,说明老化程度越严重,老化评价指标越小;当健康程度越小时,说明老化程度越严重,老化评价指标也越小。
43.本实施例基于上述方法可以得到各待检测电缆对应的老化评价指标,属于同一个匹配对的两个待检测电缆对应的老化评价指标相同。
44.本实施例基于各待检测电缆对应的老化评价指标来对对应的新能源汽车的待检测电缆的老化情况进行分析,进而对不同的老化情况采取不同的措施,具体为:若待检测电缆对应的老化评价指标在0.8以上,认为新能源汽车对应的待检测电缆具有轻微老化,可工作2-3年后此新能源汽车的待检测电缆进行老化测试;若待检测电缆对应的老化评价指标在0.6-0.8,认为新能源汽车对应的待检测电缆具有中度老化,可间隔1年后再次对此新能源汽车的待检测电缆进行老化测试;若待检测电缆对应的老化评价指标在0.3-0.5,认为新能源汽车对应的待检测电缆存在较为严重的老化,则建议在短时间内对此新能源汽车的待检测电缆进行更换。若待检测电缆对应的老化评价指标在0.3以下,则认为新能源汽车对应的待检测电缆老化十分严重,应立即更换此新能源汽车的待检测电缆,以避免出现是事故。本实施例中根据各待检测电缆对应的老化评价指标来评判对应的
新能源汽车的待检测电缆的老化情况的标准可根据实际需要进行设置。
45.本实施例首先根据各待检测电缆对应的甲基基团含量序列、羟基基团含量序列和局部放电电荷量,计算各待检测电缆对应的健康程度,然后根据任意两段待检测电缆对应的健康程度、局部放电电荷量和去极化电流序列,计算任意两段待检测电缆之间的老化特征相似程度,最后根据任意两段待检测电缆之间的特征相似程度,计算各待检测电缆对应的老化评价指标。本实施例中该系统为电性能的测试系统。本实施例利用新能源汽车交联聚乙烯电力电缆的各种目标特征对其的老化情况进行分析,克服了人工方式对电缆老化情况进行检测效率较低的问题,通过自动化的方式提高了对电缆老化情况检测的效率。
46.需要说明的是: 以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1