用于测定油层渗透率、孔隙率和伪相对渗透率的分布的方法

文档序号:6138357阅读:426来源:国知局
专利名称:用于测定油层渗透率、孔隙率和伪相对渗透率的分布的方法
技术领域
本发明涉及一个地下油层的石油和天然气生产,更特别地涉及与一个油层仿真处理的子体(subvolume)中的孔隙率或渗透率相关的油层参数,其中该处理用于预测烃是如何在一个油层中流动的。
地震勘探的通常目标是在一个感兴趣的区域内,产生和显示地下各层的结构模型。为了完成这样的勘探,在该勘探区域内沿着一个网安放了诸地震传感器的一个阵列,并且在靠近该传感器阵列的一个特定位置上放置一个声源。该声源向地中注入一个声音信号,该信号向下传播到地球之中,并且从不同的诸地层部分地反射回地表,在地表处该反射信号被该传感器阵列检测到。被每一个传感器所检测到的诸反射信号都是描述振幅与时间的连续的模拟电信号,它们被记录下来用于以后的处理。然后该传感器阵列被移动到一个新的位置并且重复进行该过程。在已经获得足够的数据之后,通过以例如每2毫秒1次的间隔对诸信号进行采样,将来自诸传感器的诸模拟信号转换为数字格式。随后使用一部数字计算机进行地震数据处理,这种数据处理可以针对各单独的迹线(trace)来进行。经过处理之后,该数据被再转换为模拟形式并且被显示为各种曲线,或者被显示为一种3维(3-D)的彩带立方图,后者更有效地呈现出各种地下结构特征的显示。
将3维地震数据用于地震反射成像的目的已经取得高度的成功,但由于在该反射信号中所提供的关于这些特性的有限的信息量,使得人们难以根据地震反射诸显示来检测油层岩石物理特性的各种变化。相应地,光使用地震数据,难以确定涉及一个油层的石油和天然气的成功生产的许多重要特征,例如在地下地层中的孔隙率和渗透率。同样大家都知道使用深度比例测井曲线,例如测井电缆测井,去精确地测定与感兴趣的地下构造相关联的诸岩石物理特性。能从测井或岩芯取样操作中获得的油层诸特性包括层速度、密度、孔隙率、液体饱和度,岩性成分等。然而,这样的测井和岩芯数据仅局限于,例如,围绕进行测量的井眼大约6到12英寸的面积延伸。由于一个地下构造的各项岩石物理特性在同一地层的不同部位上可以大幅度地发生变化,因此,即使在同一地层,来自一个区域的多个油井的数据分析在预测油层产量方面可能提供不了有帮助的相关性。例如,在同一地层中,在一个位置上可能具有开采价值。这可能由于许多困难因素,其中一个最可能的因素就是由于迁移到一个不同的层而使一种烃趋于枯竭。
若一个油井位于该地震勘探区域,则可以进行深度比例测井的直接测量,从诸测井记录中可以得到十分详细的信息,例如岩性成分、孔隙率、密度、以及液体饱和度。从这些测井记录可以计算出合成的时间比例地震迹线。该合成迹线能用于向地球物理学家说明,在位于或靠近该油井处的地质条件下,一条时间比例地震迹线应当是什么样的。正如在本文中所使用的那样,一条合成的地震迹线是从一个地下地层模型和一个假设的源,用数学方法推导出来的一组人工的地震信号。相应地,借助于将在该油井处测得的诸岩石物理特性用作一个初始模型(或者一个参考点),并对该初始模型已测得的诸地下特性施加所期望的各种扰动,以便获得能代表远离该井眼处的岩性的诸正向模型。这种扰动技术可以被推广应用,以便提出远离该井眼部位的诸岩性模型。因此,在本文中有时被称为诸模型迹线的附加的诸合成地震迹线可以被计算出来,上述诸合成迹线使一个正向模型,即,在离开该井眼某个水平距离处的岩性,趋于典型化。
虽然根据实际的岩石物理数据或岩性数据,或者假设对这些数据施加各种扰动,都能现成地计算出合成的诸地震迹线,但是这些合成的诸地震迹线,但是这些合成的诸迹线会受到某些限制。例如,一个由孔隙率为15%、厚度为30英尺的砂层形成的构造,可以产生跟具有油层结构的、厚度为15英尺的砂层相同的地震迹线。在过去的地震/岩性反演技术中具有(1)经过某些算法,例如迹线整合、反卷积或求解联立方程,直接地将一条地震迹线转换为一条伪测井曲线(通常为声阻抗),或者(2)在一条个别的迹线的基础上,迭代地扰动各正向模型,直到从它们产生适当地匹配于实际地震数据的合成的诸迹线为止。由于这些方法都无法解决合成的诸地震迹线对油层声阻抗特性的非唯一性限制,使得基于这些合成迹线的诸油层模型缺乏可信性。
在相反的情况下,假设某些初始条件,人们可以从一条已记录的真实的时间比例地震迹线或者一条合成的地震迹线导出一条深度比例测井曲线,用以显示对应于该地震迹线的一个井的连续的岩石物理的或岩性学的数据。这样一种导出的测井曲线可以被称为一条伪测井曲线,正如在本文中使用的那样,一条伪测井曲线是一条关于泥质含量(shaliness)、孔隙率、液体饱和度、声阻抗或密度的人工测井记录,通过基于假设的岩石物理特性去反演一条地震迹线,或者通过对一条初始的测井曲线的各项岩石物理特性进行扰动,就能导出上述的伪测井曲线。基于一条地震迹线可以现成地计算出诸伪测井曲线,而在将该伪测井曲线转换为一条地震迹线时,这些伪曲线在岩性/地震反演中也容易出现非唯一性。
由于油层的石油和天然气生产在某种程度上跟孔隙率和渗透率有关,所以针对油层生产的工程现场开发策略需要关于油层渗透率、孔隙率以及各孔隙层和渗透层的沉积物排列的详细信息。希望在30到300英尺的表面间隔上取得这些数据,然而,油层中的井眼的穿透力,如果有的话,通常相距数千英尺。若真实的地震迹线诸记录能够被转换为精确的诸地下模型,则3-D地震勘探在数十英尺的表面间隔上取得的地下读数能帮助引导岩石物理各种图形的生成。相应地,仍然需要将岩石物理数据和地震数据精确地转换为地下岩石物理诸特性的详细显示。
本发明的一个目标就是,通过在与油井控制(尺寸)不相符的相对小的体仿真诸单元中对油层诸特性进行建模,来更精确地预测油层诸特性的分布。
一个更具体的目标就是,将地震数据、岩石物理数据以及工程数据组合在一起,以便更好地预测一种油层特性,例如孔隙率的分布。
又一个更具体的目标就是,改进预测一条趋势曲线的精度,该曲线说明一个含油层的深度与渗透率或孔隙率的关系。
本发明的另一个目标就是,将地质学家、地球物理学家以及工程师的独立知识融合为一种方法,用于在该油层中平面地和垂直地分配油层的伪相对渗透率。
又一个更进一步的目标就是提供一段计算机程序,用以产生深度对孔隙率或渗透率的趋势曲线的地下分布的高分辨率图像。
根据本发明,通过首先对感兴趣的油层含油层的岩石物理特性进行建模,随后对在该油层中与油井控制(尺寸)不相符的相对小的体的诸仿真单元的渗透率和孔隙率进行建模,就能达到上述的和其他的诸目标。在本发明的第一步骤中所要求的岩石物理模型,依赖于一个基本数据集,该数据集包括测井曲线诸特性以及一个3-D地震数据体(3-D seismic data volume)。虽然任何合适的岩石物理模型都可以被用于本发明的第一步骤,但是一种能辨识和处理地震/岩性诸参数的非唯一性反演(NUI)的前向建模技术是更为可取的。在本文中被称为一个NUI模型的这个优选模型开始于该油井部位,并且预测一个相当大量的NUI模型曲线,它们作为整个油层的深度的一个函数,并且在对应于该地震数据的诸间隔上,可以被表示为一种特性的诸连续曲线。在下一个步骤中,对渗透层或孔隙层诸类型的多条可能的总趋势曲线进行定义,用于以后的比较,以便预测该油层诸特性的诸剖面图。在相当靠近的地震数据的间隔上,以油层诸特性的诸连续曲线的形式拥有可用的信息之后,就可以根据该油层特性的诸连续曲线来选择大量的NUI模型数据点,它们可以是关于孔隙率、泥质含量和/或渗透率的各种数值。这些被选出的诸NUI点被排列为在感兴趣的油层含油层中的诸点的各行以及沿横向延伸的各列。其后诸NUI数据点被划分为在本文中被称为油层模型诸单元的诸子体,它们是穿越该含油层的诸列,并且该列的横截面由覆盖于感兴趣的该层的上表面的一个点阵来定义。接着该油层模型诸单元就被划分为所需数目的水平分层并且为每一个分层计算诸NUI点的算术平均值。该孔隙率或渗透率的平均值对诸分层的深度的图产生出一条深度对孔隙率或渗透率的趋势曲线,可以用统计方法对该趋势曲线进行分析,以便定义由该油层模型单元的孔隙率或渗透率分布图最近似地表示的总曲线形状的类型。通过将各种颜色分配于诸总曲线类型中的每一种,就能构成说明针对每一个单元的总曲线类型的图形表示。
还提供了一个包括诸整数数值的范围的输出文件,其中每一个整数数值都对应于一种总曲线形状,并且向每一个油层模型单元仅指定一个数值。由于每一个已指定的数值都对应于一种唯一的孔隙率或渗透率对深度的趋势,这样就有可能将每一种趋势跟针对这样一种变化已经计算出来的一条对应的伪相对渗透率曲线建立关联。正如在本文中所使用的那样,伪相对渗透率是水-油或气-油相对渗透率的集合,当把它用于一个仅有1个含油层的油层仿真模型时,所产生的性能特性跟将该含油层再细分若干次所得到的性能特性是可比较的,因此可用来反映渗透率和/或孔隙率随深度的变化。
在Kyle,J.R.和Berry,D.W.发表于《SPEJ》杂志(1975年8月)第269-276页题为“用于控制数值离散的若干新的伪函数”的论文中公开了一种用于将伪相对渗透率诸曲线分配于总曲线形状的方法,该文所公开的内容作为参考文献被收入本文。
根据本发明的另一个方面的装置包括一部计算机,它被编程去实行上述的方法。在再一个方面,一个含有一种计算机可读介质的程序存储装置拥有嵌入其中的计算机程序代码,以便驱使该计算机去实行上述的方法。
本专利的文件含有至少一张彩色图。根据用户请求可由专利与商标局提供具有彩色图的本发明的拷贝,但需支付必要的费用。


图1是一份一般化的土层剖面图,说明位于一个油井并且处于正向模型诸部位的各地震反射点。
图2(a)是图1的平面图,表示一个油井以及周围的诸模型部位。
图2(b)是一份简图,说明针对一个正向模型部位的岩石物理模型的研制。
图3(a)是一个典型的地震剖面图。
图3(b)表示对应于图1的地震剖面图的诸合成迹线。
图4说明跟本发明有关的一组岩性学测井曲线序列。
图5说明将一条真实的地震迹线跟10条合成的模型迹线的比较。
图6是一份说明该相干分析方案的图。
图7(a)-(g)是一份图表,说明7种深度对孔隙率或渗透率的可能的趋势曲线。
图8(a)是一份透视图,所描绘的是划分为4块水平的分层的一个油层模型单元。
图8(b)是针对图8(a)的油层模型单元的深度对渗透率关系的图。
图9是一份根据本发明用于计算机实现的简化流程图。
图10是由计算机产生的彩色显示,用于预测各种总曲线形状的表面分布。对每一种总曲线形状指定一种颜色。
可用的3维地震数据的大量积累,以及地球物理学家对油层特征研究的日益关注已经提供了基本数据的各种组合,由此可以实施各种改进的地震反演方案。本发明所使用的这些基本数据采取时间比例诸地震迹线的空间序列的形式,正如本领域技术人员所熟知的那样,这些数据已经被记录、存储并且适当地通过一个受限的时间窗口,另外还包括位于该地震勘探区域的一个或多个油井的岩性学及岩石物理信息。从这些基本数据可以计算出合成的诸地震波曲线图以及诸伪测井曲线,并且随后将其引伸到在正向模型部位中很可能出现的多种岩性条件。用于产生合成的诸地震波曲线图的子波处理方法的细节已被公开,请参看Dennis Neff在1993年5月28日申请的美国专利第5,487,001号中的图3,该文所公开的全部内容作为参考文献已被收入本文。在已收入本文的公开内容中还参照实例说明了产生各种伪测井曲线的细节,其中包括岩性(Vsh)、饱和度(Sw)、孔隙率(φ)、产油区、声阻抗(Δt)以及密度(ρ)。
在本发明的优选实施例中,在岩石物理特性的NUI建模的第一步骤获得围绕一个油井的3维地震勘探数据,还有来自至少一个油井(例如,来自诸测井曲线以及各次取岩心操作)的岩性学和岩石物理信息。该方法在一个参考井位上定义一个初始的岩性学模型,它包括各种速度和密度记录,通过使用岩石物理方程式将已测量的孔隙率、渗透率、组成成分和饱和度诸记录整合为各种速度与密度记录。并将对应于该井位的真实地震迹线与该初始模型建立关联,使得在该井位处的岩性数据跟地震数据成对出现。然后在该模型部位使用正向模型扰动技术将地震数据跟岩性数据配成对。
在各井位上各自形成的已知的岩石物理诸参数被系统地扰动,并且通过这种方式来确定大量的合成的诸地震波曲线图,或者所谓地震模型诸迹线,以便建立一个足够大的诸合成迹线的目录,使之包括针对每一个拥有该初始模型的已知诸条件的正向模型部位的一定范围的岩性学和岩石物理诸参数。
现在,参考一个一般化的烃油层,更详细地说明本发明的方法的各个步骤。现在特别地参看图1,图中示出了地表10以及具有多个岩性层的该地层的地下剖面。地下土层的例子示于标号12、14和16。地层14被表示为从处于该层中心的井28处生产烃,并且,如图所示,该地层14在14(a)和14(b)处为有水的区段。通过定位一个表示为16的栅网状的地震源,以及表示为18的诸地震接收机,就能实行3-D地震勘探,上述诸地震接收机根据从烃层14上被表示为20和22的诸点处反射的信号,生成诸地震迹线。图中仅表示了远离该井的诸反射点的一个集合,需要弄明白的是,从表示为24的诸位置中的每一个所反射的诸地震迹线将包括来自诸源的一个阵列的诸迹线,并且在每一个位置24上,诸接收机都有一个共同的中点。图1所示的诸位置24跟正向模型诸部位相符合。如同在本文中所使用的那样,一个正向模型部位是一根垂直线穿越一个地下含油层的位置,并且该垂直线连接该层上下边界的诸地震反射点。在图1中还示出了一个测井曲线记录工具23,它被用来在该土层14中进行各种测井曲线的测量。
用以获得初始数据的第一步骤包括(1)如图3所示,采取从地下诸点反射的地震信号的形式的3-D地震勘探,以及(2)如图4所示的测井曲线数据。获得这些地震数据和测井曲线数据并将其加工为有用形式的各种方法在专业人士中是人所共知的。
如前所述,该初始数据包括在一个参考井位28处的、基于测井数据的一个岩性学模型。该初始模型包括一个速度记录和一个密度记录,它们是这样被导出的通过使用岩石物理诸方程式,将所测得的孔隙率、渗透率、组成成分以及液体饱和度整合为速度和密度诸记录,并且整合为一条真实的地震迹线,它跟该初始的测井曲线成对出现。在前面已收入的参考文献中已叙述了用以完成这种关联的方法。
图2(a)是图1所示的3-D立体图中一部分的平面图,图中示出了被诸地震反射点24所包围的油井28,而诸地震反射点则跟正向模型诸部位相符。该前向建模技术建造了一个合成的正向模型诸迹线的目录。参看图2(b)将能更清楚地说明此项技术,图中示出了一个用虚线28来表示的油井以及一个用虚线24来表示的单独的正向模型部位。在井位28处,该初始模型包括已测量的岩性条件30,一条已测量的速度和/或密度测井曲线32,它纳入了岩石物理诸参数,以及一条真实的地震迹线34。为了获得该正向模型,对位于该初始部位的已知条件30施加扰动,以便很相似地模拟在该前向部位24处的岩性条件。虽然人们认识到可以提出任何所需数量的条件,但如图所示,仅提出了两个条件40和42。就每一个已提出的岩性条件来说,可以为该模型部位24构造多条在地质学上为适宜的伪测井曲线。在图2(b)中,如标号43-46所示,针对每一个已提出的条件,构造了两条伪测井曲线。再有,人们认识到,如果需要的话,可以构造附加的诸伪测井曲线。随后针对每一条伪测井曲线可以导出许多条合成的地震模型迹线。在图2(b)中,虽然针对每一条伪测井曲线可以包括多于两条的合成迹线,但如标号50-57所示,针对每一条伪测井曲线仅导出了两条合成的地震模型迹线。相应地在每一个前向部位,诸模型元素包括4种属性一条真实的地震迹线60,至少两个岩性条件40和42,至少4条伪测井曲线43-46,以及至少8条合成模型地震迹线50-57。
图4表示在本发明中感兴趣的一组测井曲线的一种典型的计算机工作站的显示,其中包括泥质含量(VSH)、饱和度(Sw)、孔隙率(φ)、产油区、声阻抗(Δt)以及密度(ρ)等岩石物理诸参数,它们适用于本发明。在水平轴上为图解说明的诸测井曲线加上适当的比例,并且在垂直轴上以英尺为单位表示油井的深度。在图4中还示出了用以反映水平层位的一个含油层边界的定义,该水平层位表示可以被选择用于根据本发明进行详细建模的该体的剖面。
在建模中感兴趣的诸参数包括那些可以表明一个含有足够数量的烃以证明其商业开采价值的地下含油层的诸参数,例如油层的厚度、泥质含量、孔隙率、渗透率、水饱和度,等等。通过将处于一个模型位置上的一条真实的地震迹线,例如图2(b)中的迹线60,跟向该模型部位提出的若干不同的岩石物理参数中的最相似者联系在一起,就能完成这一步。因此,在岩石物理诸特性中的各种扰动能表示该岩石物理特性或该初始模型的诸特性的可能的和合理的变化的地方都可以使用前向建模,而与在该正向模型部位处的诸真实地震迹线的分析无关。
现在参看图3(a)。图中示出了已记录的和已处理的诸地震迹线(例如那些可以从图1所示的地层的一个剖面中获得的地震迹线)的一个地震剖面图。图3(b)表示对应的诸模型迹线的一个集合(许多个可能的集合中的一个),它们是合成的诸模型迹线,如图2(b)中标号50-57所示,诸合成迹线中的每一条都跟一条伪测井曲线以及一种岩石物理条件成对出现,这也如同图2(b)所示。在图3的水平轴上,在该剖面图的顶部示出了地震台号码0-30,并且在该垂直轴上以毫秒为单位标出了两路地震传播时间的诸间隔。
参看图5,图中示出了将合成地震模型诸迹线的目录匹配于诸真实迹线的过程。这张图表示将一条真实的地震迹线跟10条合成的模型迹线进行比较的过程。一个典型的诸合成迹线的目录将包括从大约1,000条到大约200,000条迹线。然而,如前所述,使用一部计算机将在该目录中的每一条合成正向模型迹线跟在该次地震勘探中的每一条真实的迹线进行比较,并且为每一个正向模型部位选择若干(例如10到50)条不同的合成地震迹线,它们以某种方式实现了该模型部位与该真实的地震迹线之间的“最佳拟合”。介于合成的与真实的诸迹线之间的相似性的测量包括4个因子的数学计算。这些因子包括一个绝对平均差值因子,一个所谓的RB因子,一个互相关系数以及一个互相关延迟,可以对这些因子中的任何一个进行加权,这取决于,例如,该基本数据的可信度。该互相关技术通常被限制在该地震迹线的30毫秒(ms)到100毫秒的一个小时间窗口之内,如图5所示。这个时间窗口被这样调整,使之包括感兴趣的油层区域加上可能影响地震反射的任何过负荷或欠负荷区域。所示的选择方法利用两个参考地层,然而,也可以使用一个单独的地层,它用作互相关运算中的零延迟位置以及用作诸伪测井曲线的定位的一个参考时间。该地震剖面图的数据体为相对幅度并且最好是零相位。
表1表示在图5中所说明的10条被选出的“最佳拟合”迹线的数值比较,在该表中所有的互相关系数均大于0.984;互相关延迟在3以下;平均绝对差值在0.0104以下;并且该RB因子大于0.983。若互相关系数的数值为1.0,并且平均差值为零,则表示一次完全的匹配。然而,当该互相关系数以及绝对值的差值被独立地归一化到一个-1.0到1.0的比例上时,就出现该模型的以及真实的地震迹线之间的最稳健的比较,并且随后根据一个被称为RB因子的综合数值进行分类,该RB因子示于表1。RB因子为1.0表示一次完全的匹配,而RB因子越小于1.0,则反映出二者的波形越不相似。
表1
许多合成迹线的解能满足该真实的地震数据,例如,在图5所示的10条模型迹线中,每一条都匹配于该真实的地震迹线。由于这些匹配的合成迹线中的大多数都不会因为在一个模型部位上跟那些在地质学上不能接受的岩性(数据)配成对而被排除掉,所以就使用一种相干的数值分析方案来对诸伪测井曲线进行比较,这些伪测井曲线跟被选出的、具有针对相邻诸部位的对应的诸伪测井曲线的“最佳拟合”诸合成迹线是配对的。现在参看图6,图中示出了9个正向模型部位,在一个待建模的体中,根据由在括号中的数值所表示的x和y坐标来标识诸部位。图中还示出了被标记为z的第3坐标轴,它被用来表示时间或深度。针对每一个模型部位,示出了若干条伪测井记录的迹线,例如在参考数字50-55处,它们都是伪测井曲线,并且跟每一个模型部位中被选出的“最佳拟合”合成地震迹线配成对。一个数值分析方案,如前面图5所示,将每一个部位的诸伪测井曲线跟诸相邻部位的诸伪测井曲线进行比较。例如,与部位位置0,0相关的诸伪测井曲线跟周围8个部位对应的诸伪测井曲线进行比较。然后,该数值分析方法为每一个模型部位选出跟它周围的地质状况最和谐的那条单独的伪测井曲线,并且被选出的诸伪测井曲线都被包括在该NUI模型之中。这种数值相干方案可以采取不同的形式。无论它采取何种形式,其功能都是对处于诸相邻部位的岩石物理诸特性的相似性进行比较。该方案可以包括下列标准(a)对哪一条伪测井曲线进行比较,上述伪测井曲线即,孔隙率、渗透率、阻抗,等等;(b)在每一个部位被选出的伪测井曲线的数目;(c)用于比较的深度或时间间隔;(d)地震匹配的质量;以及(e)从该中心位置起算的径向距离。还可以结合上述标准使用相关的加权因子。例如,处于对角线两端的伪测井记录迹线,诸如1,1和-1,-1,最好按70%进行加权,以便选出该中心记录。一般来说,在诸伪测井曲线的相干测试以及诸地震迹线的相关运算中,应使用相同的时间窗口。
这种相干匹配方案使得地下体的3维成像模型显示的各种图形具有在地质学上更加合理的趋势,同时保持地震勘探的高分辨率。
如前所述,油层生产石油和天然气是基于孔隙率和渗透率,并且关于在各油井之间的深度对孔隙率或渗透率趋势曲线方面的知识对于该油层的鉴定来说是重要的。在图7(a)-(g)中,参照于一个坐标轴示出了诸趋势曲线的几种一般剖面图。例如,图7(a)表示一条趋势曲线1,其渗透率或孔隙率随着深度增加而持续增加,图7(b)示出了一种阶跃型函数2,表明对该油层模型单元来说,其渗透率或孔隙率随着深度的增加出现一种突然的增加,并且图7(c)示出了一条趋势曲线3,其渗透率或孔隙率在深度改变时保持恒定。在图7(d)到(g)中,分别示于4,5,6,7等处的其他函数类型的诸曲线在各油层中是司空见惯的。正如在下文中将要更充分地阐明的那样,用于跟NUI模型数据进行比较的可能的含油层类型包括,但不限于,在图7(a)-(g)中所示出的7种类型。
在间隔相当密集的地震数据中,以连续的伪测井曲线的形式取得详细的信息之后,就能从该连续的诸模型曲线中选出针对诸特性的NUI诸数据点,诸如孔隙率、泥质含量或渗透率,并且在感兴趣的整个体中排列成各行和各列。然后这种NUI数据被划分为由遍布于感兴趣的体之中的油层模型诸单元所定义的诸子体。将该数据划分为油层模型诸单元的优选方法如图10所示,用一个栅网覆盖于该油层的上部表面之上,随后标识在每一个网眼的内部区域所包含的NUI诸数据点。
现在参看图8(a),通常用参考字符70来表示一个油层模型单元,在该油层模型单元70里面,许多NUI数据点72被排列成各行和各列。在图8(a)中还示出了将该油层模型单元70划分为4块水平的分层74。人们已经认识到,可以将该油层模型单元70划分为数目更多的分层,而在本发明的实践中,诸单元被划分为由用户指定其数目的诸分层,通常是每增加5到10英尺就增加一个分层。接着,对每一个分层里面所包含的诸数据点求出算术平均值,并且绘出该平均值对深度的曲线,以便产生一条深度对孔隙率或渗透率的趋势曲线,如图8(b)所示。然后将如图8(b)中由虚线4所表示的趋势曲线,跟图7所示的每一条典型的趋势曲线进行比较。使用一种统计分析方法,最好是一种最小二乘法误差技术,将图7中能最近似地表示图8(b)的曲线的那种曲线类型辨识出来。如图8(b)所示,图7(d)中的曲线类型4被选出,用以跟所示的油层模型单元70建立关联。
为了从图7中将最有代表性的趋势曲线分配于每一个油层模型单元,在本发明中也考虑了各种详细的模式识别技术。例如,参看图7(c)的曲线类型,计算了该平均值的统计误差,并且这种曲线通常被认为是一种可能的有代表性的趋势曲线。图7(a)和(g)所示的诸曲线类型被这样测试通过使用简单的线性回归可知二者的区别仅在于曲线斜率的符号不同,因此可以消去一种类型。若该回归的斜率太小,不足以影响该单元的伪相对渗透率,则图7(a)和(g)两种类型的曲线将被排除。
其次,用搜索一个转折点的方法对图7(b)和(f)的诸类型进行模式测试,该转折点表示随着深度的变化,相对渗透率或孔隙率的平均值出现突然的增加或减小。相应地,若出现这样一种变化,则图7(b)或(f)所示的诸类型中将有一种被消去,这取决于随着深度的增加,孔隙率或渗透率的变化是增加还是减小。在使用中,该转折点受到如下的约束一是该转折点应靠近该单元的中心,二是该变化应当具有足够的幅度,使之能影响该单元的伪相对渗透率。相应地,图7(b)和(f)所示的诸曲线类型中的一种或两种可以被消去。
用搜索一个深度转折点的方法对示于图7(d)和(e)的剩下的两种类型进行测试,在该转折点上下两侧的诸数据点具有符号相反的斜率。每一种斜率的符号将区分示于图7(d)和(e)的诸曲线类型。该转折点受到如下的约束一是该转折点应靠近该单元的中心,二是诸斜率应当符合某些阈值标准,使之能适当地影响伪相对渗透率。相应地,图7(d)和(e)所示的诸曲线类型中的一种或两种可以被消去。
在前面所述的模式识别技术中,至少有1种曲线类型、可能多达4种类型,被认为是有代表性的趋势曲线的候选者,并且将从中选出具有最小统计误差的趋势曲线,随后将其分配到每一个油层模型单元。
由于用一个整数来标识每一条总趋势曲线,所以上述模式识别技术产生一个整数数组,其中每一个整数都对应于图7(a)-(g)所示的总曲线形状中的一种。被分配到每一个油层模型单元的数值只有一个。在本发明的一个优选实施例中,对每一个整数数值都指定一种颜色,并且该颜色被绘在图上,以给出分配于每一个油层模型单元的诸趋势曲线的彩色图形表示。在本发明的另一个优选实施例中,向该油层工程师提供一个含有该整数值数组的文件。该油层工程师得到每一个整数所代表的总的孔隙率或渗透率随深度的变化(曲线)之后,就能根据前面已收入本文的Kyle,J.R.等人(编写的)参考文献中所述的诸方法,直接地将伪相对渗透率诸曲线跟在一个油层仿真模型中的每一个油层模型单元互相关联起来。由此向该油层工程师提供关于油层参数的十分详细的相对渗透率信息。
正如本领域技术人员所能理解的那样,本发明的方法需要非常大量的详细计算,例如生成诸合成迹线的一个目录,诸伪测井曲线,以及将真实的和合成的地震迹线加以比较。进一步的处理包括对含有诸数据点的大量分层的数据数值的平均运算,将导出的油层特性诸趋势曲线跟一般化的诸趋势曲线加以比较,以及生成使用各种阴影和色调的彩色显示。
相应地,图9是本发明的方法的计算机实现的一份流程图。在图9中,一开始如(标号)80所示,所有的地震数据和岩性数据被组合以提供所需的基本数据。在步骤82,生成一个初始模型,它包括跟预期结果有关的岩石物理诸参数。随后,如方框84所示,对初始的岩性数据施加扰动,以便在正向模型诸部位提出多种岩石物理特性。在步骤86,为每一种被提出的岩石物理特性计算多条伪测井曲线并与该模型部位建立关联,并且为每一条被提出的伪测井曲线计算多条合成的地震迹线。下一个步骤88涉及将诸真实的地震迹线跟计算所得的合成迹线进行比较,以便至少确认若干条迹线,它们以某种方式最佳地匹配于一条真实的地震迹线。其后在步骤90,被关联于该已确认的诸合成迹线的多条伪测井曲线被连接到每一个模型部位。在步骤92,在每一个模型部位上的多条伪测井曲线都跟诸相邻部位进行比较,并且在步骤94,基于这个比较结果选出一条单独的伪测井曲线,作为针对每一个前向部位的一条模型测井曲线。
在步骤96,至少有7条孔隙率或渗透率趋势曲线被定义,它们是在油层中可能的含油层类型的代表。这些趋势曲线被保留,以便跟计算所得的油层渗透率或孔隙率的诸曲线进行比较。下一步如步骤98所示,该NUI孔隙率或渗透率诸数据点被划分为油层模型诸单元。接着,在步骤100,这些油层模型诸单元被切分为水平的诸分层,每一个分层含有一组数据点。在步骤100,还计算在每一个分层中诸数据点的平均值。下一步,在步骤102,构成每一个分层的数据平均值对深度的图,并且这张图跟在步骤96中所定义的典型的诸趋势曲线进行比较,以便为该油层模型单元选出一条有代表性的曲线。其后在步骤104,可以用颜色对被选出的诸曲线进行编码,并且每一个单元的颜色可以被绘在图上,以便提供所选定的诸曲线的图形表示。
现在特别地参看图10,图中所示的是平行于一个地质层的一个地下含油层的一个表面的平面图。图10是一份由计算机生成的该地下含油层的彩色模型,它使用多种颜色去表示各种总曲线形状的面积分布。这个视图包括插入到该图左边缘的一个彩色代码,它引用了在图7(b)中所示的诸曲线的参考号码。
如本文所描述和图解的本发明是一种有效的方法和装置,可用于在一个油层内对平面的和垂直的油层孔隙率和渗透率诸趋势进行鉴定,同时在整个油层范围内分配伪相对渗透率。然而,专业人士将认识到,在不背离本发明的前提下,按照上述讲授内容对本发明作出修改和变更是可能的。这样的修改和变更可以包括将各种其他模型用于本发明所需的岩石物理模型之中。相应地,应当很清楚地理解到,本发明不局限于在诸附图中所描述和图解的具体特征,但是本发明的概念可以根据所附的权利要求书的范围加以估量。
权利要求
1.一种用于使用地震数据和油井数据确定在一个油层的一个地下含油层内油层特性分布的计算机实现方法,其中从一个基本数据集导出所述油层特性的一种岩石物理模型,该数据集包括一个3维地震数据体,以及代表在所述地震体之中的至少一个井位的所述地下含油层的结构和组织的测井曲线数据,所述方法的诸步骤包括(a)确定所述油层的所述岩石物理模型,其中所述岩石物理模型包括所述油层特性的多个模型测井曲线;(b)定义多个深度对所述地下含油层的所述油层特性的典型的诸趋势曲线;(c)基于所述诸模型的诸测井曲线,选择针对所述油层特性的一个第一组诸模型数据点,其中所述诸模型数据点在所述地下含油层中以对应于所述地震数据的间隔被排列成各行以及沿横向延伸的各列;(d)将所述诸模型数据点划分为多个油层模型单元,其中所述油层模型诸单元中的每一个穿越所述油层,并且包容一个第2组所述模型诸数据点,后者小于所述第一组;(e)将所述油层模型诸单元切分为所需数量的水平分层,其中所述诸水平分层中的每一块包容所述第2组模型数据点中的至少两个模型数据点;(f)在所述诸水平分层的每一块中,计算所述油层特性的一个平均值,并且为所述油层模型诸单元中的每一个绘出所述平均值对深度的关系曲线,以便为所述油层模型诸单元中的每一个定义一条导出的趋势曲线;(g)将在步骤(f)中为所述油层模型诸单元中的每一个导出的趋势曲线跟在步骤(b)中所定义的所述多条典型的趋势曲线中的每一条进行比较;(h)从步骤(b)所定义的典型的诸趋势曲线中选出有代表性的一条,以便跟所述油层模型诸单元中的每一个建立关联;以及(ⅰ)使用在步骤(h)中所选择的所述典型的诸趋势曲线,用以说明在所述油层含油层中的所述诸趋势曲线分布。
2.一种根据权利要求1所述的方法,其中所述油层特性从包括下列诸特性的小组中选出(ⅰ)孔隙率;(ⅱ)渗透率;以及(ⅲ)泥质含量。
3.一种根据权利要求1所述的方法,其中所述岩石物理模型是一种非唯一的反演(NUI)模型。
4.一种根据权利要求1所述的方法,其中所述地震数据体包括一份充分迁移的3维地震剖面图,并且所述测井曲线数据包括一条测井电缆测井曲线。
5.一种根据权利要求1所述的方法,其中所述确定所述油层特性的所述岩石物理模型的方法步骤包括(a)确定一个初始的岩石物理模型,它是在所述井位上的测井记录数据的代表;(b)为一组正向模型部位提出至少两个不同的岩石物理条件,其中每一个所述的正向模型部位都对应于所述地震数据体的一条单独的真实的地震迹线的岩性,因此上述迹线被表示为针对该对应的正向模型部位的一条特征地震迹线,由此向所述多个前向诸模型部位提供一组所述的特征迹线;(c)在每一个所述正向模型部位处提出(ⅰ)针对所述已提出的岩石物理条件中的每一条,至少两条伪测井曲线,其中所述诸伪测井曲线作为深度的一个函数,可以表示为所述油层特性的诸连续曲线;(ⅱ)针对所述至少两条伪测井曲线,至少两条合成的地震迹线,其中所述至少两条伪测井曲线中的每一条都跟所述至少两条合成地震迹线以及所述至少两个已提出的岩石物理条件之一建立关联,由此提出一组合成的地震迹线以及与之相关联的一组伪测井曲线;(d)建立一个目录,它包括所述的一组合成的地震迹线以及所述相关联的一组伪测井曲线,并且在所述计算机中存储所述目录;(e)从所述目录中选择所述合成地震迹线的一个第一集合以及诸伪测井曲线中的一个相关联的第一集合,以便跟所述多条特征迹线中的一条第一特征迹线建立关联;(f)从选自步骤(e)的所述第一集合伪测井曲线中选择一条伪测井曲线,以便唯一地跟所述第一特征迹线建立关联,因此它被表示为针对所述第一特征迹线的一条初始的伪测井曲线;以及(g)为所述特征的地震迹线中剩下的每一条重复步骤(e)和(f),由此给出一组初始的伪测井曲线;以及(h)其中在步骤(f)中选出的一组初始的伪测井曲线包括所述的一组模型测井记录迹线,用以确定所述岩石物理模型。
6. 一种根据权利要求5所述的方法,其中所述选择所述合成地震迹线的第一集合以及一个相关联的伪测井曲线的第一集合的步骤包括(a)在所述计算机中,将在所述目录中的每一条合成地震迹线跟所述第一特征的地震迹线进行比较;(b)基于在所述目录的诸合成迹线以及所述第一特征地震迹线之间的相似性的数字测量,选择所述合成地震迹线的第一集合以及相关联的伪测井曲线的第一集合,以便跟所述第一特征地震迹线建立关联,并且其中所述数字测量包括下列诸因子的诸数值(ⅰ)一个互相关系数;(ⅱ)一个互相关延迟;(ⅲ)一个绝对平均差值;以及(ⅳ)一个RB因子;以及(c)针对所述特征迹线中剩下的每一条,重复步骤(a)和(b)。
7.一种根据权利要求5所述的方法,其中从所述诸伪测井曲线的第一集合中选择一条伪测井曲线的所述步骤包括(a)在所述计算机中,将关联于所述第一特征迹线的诸伪测井曲线的第一集合跟关联于一条第2特征迹线的诸伪测井曲线中的至少一个第2集合进行比较,其中所述第一特征迹线和所述第2特征迹线对应于互相邻近的第一和第2正向模型部位;(b)使用在步骤(a)中得出的比较结果,用以确定介于所述诸伪测井曲线的第一集合中的每一条伪测井曲线跟在所述诸伪测井曲线的第2集合中对应的伪测井曲线之间的相似性的一种数值的度量;(c)选择所述一条伪测井曲线,用以将所述第一正向模型部位描述为在所述诸伪测井曲线的第一集合中跟所述诸伪测井曲线的至少第2集合中的一条对应的伪测井曲线具有最高相似性的该伪测井曲线;以及(d)对剩下的每一个正向模型部位重复步骤(a),(b)和(c)。
8.一种根据权利要求1所述的方法,还包括使用在步骤(h)中所选出的所述典型的诸趋势曲线,用以生成一种关于所述油层特性的分布的图像显示。
9.一种根据权利要求5所述的方法,其中所述建立一个合成的诸模型迹线的目录的步骤产生一个含有大约1,000到大约200,000条合成的地震迹线的目录。
10.一种根据权利要求5所述的方法,其中所述为了跟所述第一特征迹线建立关联而选出的合成的诸地震迹线的集合包括从大约10条合成迹线到大约50条合成迹线。
11.将真实的诸地震迹线转换为一个油层含油层中(描述其)流动特性的一个模型的装置,其中一种岩石物理模型是从包括一个3维地震体以及岩性测井曲线数据的一个基本数据集中导出的,上述测井曲线数据代表在所述地震体中针对至少一个井位的所述油层含油层的结构和组织,所述装置包括被编程以执行如下方法步骤的计算机(a)确定所述油层含油层的所述岩石物理模型,其中所述岩石物理模型包括针对一种油层特性的一组模型测井曲线;(b)定义一组深度对所述地下含油层的所述油层特性的典型的诸趋势曲线;(c)基于所述诸模型测井曲线,选择针对所述油层特性的一个第一组诸模型数据点,其中所述诸模型数据点在所述地下含油层中以对应于所述地震数据的间隔被排列成各行以及沿横向延伸的各列;(d)将所述诸模型数据点划分为多个油层模型单元,其中所述油层模型诸单元中的每一个穿越所述含油层,并且包容一个第2组所述模型数据点,后者小于所述第一组(的模型数据点);(e)将所述油层模型诸单元切分为所需数量的诸水平分层,其中所述诸水平分层中的每一块包容所述第2组诸模型数据点中的至少两个模型数据点;(f)在所述诸水平分层的每一块中,计算所述油层特性的一个平均值,并且为所述油层模型诸单元中的每一个绘出所述平均值对深度的关系曲线,以便为所述油层模型诸单元中的每一个定义一条导出的趋势曲线;(g)将在步骤(f)中为所述油层模型诸单元中的每一个导出的趋势曲线跟在步骤(b)中所定义的所述一组典型的趋势曲线中的每一条进行比较;(h)从步骤(b)所定义的典型的诸趋势曲线中选出有代表性的一条,以便跟所述油层模型诸单元中的每一个建立关联;以及(ⅰ)使用在步骤(h)中所选择的所述典型的诸趋势曲线,用以说明在所述油层含油层中所述诸趋势曲线的分布。
12.根据权利要求11所述的装置,其中所述油层特性从包括下列诸特性的小组中选出(ⅰ)孔隙率;(ⅱ)渗透率;以及(ⅲ)泥质含量。
13.一种根据权利要求12所述的装置,其中所述岩石物理模型包括一种非唯一的反演(NUI)模型。
14.根据权利要求11所述的装置,还包括一个声源,用于向地层注入各种声音信号;用于检测因地下的不连续性而发回地表的各种声音反射信号的装置;用于记录所述各种反射信号的装置。
15.一个可以被计算机读取的程序储存装置,确实地包含着一段可以被所述计算机执行的指令程序,用于将真实的诸地震迹线以及测井曲线数据转换为一个油层含油层的流动特性的一个模型,所述方法的诸步骤包括(a)确定所述油层含油层的所述岩石物理模型,其中所述岩石物理模型包括针对一种油层特性的一组模型测井曲线;(b)定义一组深度对所述地下含油层的所述油层特性的典型的诸趋势曲线;(c)基于所述诸模型测井曲线,选择针对所述油层特性的一个第一组诸模型数据点,其中所述诸模型数据点在所述地下含油层中以对应于所述地震数据的间隔被排列成各行以及沿横向延伸的各列;(d)将所述诸模型数据点划分为多个油层模型单元,其中所述油层模型诸单元中的每一个穿越所述含油层,并且包容一个第2组所述诸模型数据点,后者小于所述第一组;(e)将所述油层模型诸单元切分为所需数量的诸水平分层,其中所述诸水平分层中的每一块包容所述第2组诸模型数据点中的至少两个模型数据点;(f)在所述诸水平分层的每一块中,计算所述油层特性的一个平均值,并且为所述油层模型诸单元中的每一个绘出所述平均值对深度(的关系曲线),以便为所述油层模型诸单元中的每一个定义一条导出的趋势曲线;(g)将在步骤(f)中为所述油层模型诸单元中的每一个导出的趋势曲线跟在步骤(b)中所定义的所述一组典型的趋势曲线中的每一条进行比较;(h)从步骤(b)所定义的典型的诸趋势曲线中选出有代表性的一条,以便跟所述油层模型诸单元中的每一个建立关联;以及(ⅰ)使用在步骤(h)中所选择的所述典型的诸趋势曲线,用以说明所述诸趋势曲线在所述油层含油层中的分布。
16.一种根据权利要求15所述的程序存储装置,其中所述油层特性从包括下列诸特性的小组中选出(ⅰ)孔隙率;(ⅱ)渗透率;以及(ⅲ)泥质含量。
17.一种根据权利要求15所述的程序存储装置,其中所述岩石物理模型包括一种非唯一的反演(NUI)模型。
18.一种根据权利要求15所述的程序存储装置,其中所述确定所述油层的一个岩石物理模型的方法步骤包括(a)确定一个初始的岩石物理模型,它是在所述井位上的测井曲线数据的代表;(b)为一组正向模型部位提出至少两个不同的岩石物理条件,其中所述正向模型诸部位中的每一个都对应于所述地震数据体的一条单独的真实的地震迹线的岩性,因此该迹线被表示为针对该对应的正向模型部位的一条特征的地震迹线,由此给出对应于所述一组正向模型部位的一组所述诸特征迹线;(c)在每一个所述正向模型部位处提出(ⅰ)针对所述已提出的岩石物理条件中的每一个,至少两条伪测井曲线,其中所述诸伪测井曲线作为深度的一个函数,可以表示为所述油层特性的诸连续曲线;(ⅱ)针对所述至少两条伪测井曲线,至少两条合成的地震迹线,其中所述至少两条伪测井曲线中的每一条都跟所述至少两条合成地震迹线以及所述至少两个已提出的岩石物理条件之一建立关联,由此提出一组合成的地震迹线以及一组相关的伪测井曲线;(d)建立一个目录,它包括所述多条合成的地震迹线以及所述相关的多条伪测井曲线,并且在所述计算机中存储所述目录;(e)从所述目录中选择所述合成地震迹线的一个第一集合以及诸伪测井曲线的一个相关联的第一集合,以便跟所述多条特征迹线中的第一特征迹线建立关联;(f)从选自步骤(e)的所述伪测井曲线的第一集合中选出一条伪测井曲线,以便唯一地跟所述第一特征迹线建立关联,因此它被表示为针对所述第一特征迹线的一条初始的伪测井曲线;以及(g)为所述特征的地震迹线中剩下的每一条重复步骤(e)和(f),由此给出一组初始的伪测井曲线;以及(h)其中在步骤(f)中选出的多条初始的伪测井曲线包括所述多条模型记录迹线,用以确定所述岩石物理模型。
19.一种根据权利要求1所述的方法,其中,在一个油层仿真模型内,在与伪相对渗透率诸曲线相对应的条件下,逐个单元地指定所述典型的诸趋势曲线的分布。
全文摘要
公开了一种使用测井数据(80)和3维地震数据(80)以便预测油层渗透率或孔隙率以及伪相对渗透率的分布的方法和装置,其中,本方法的一个优选的第一步骤(82)对感兴趣的油层特性进行建模以便给出诸模型测井曲线(86),上述诸模型测井曲线作为深度的一个函数,可以表示为一种油层特性的诸连续曲线。下一个步骤(88)在穿越一个油层含油层的诸连续曲线上选择个别的数据点,并且针对许多类似于杜状的子体(其中的每一个都包容一部分被选出的诸数据点)确定诸渗透趋势曲线(96)。随后诸子体被切分为所需数目的诸水平分层,每一个分层都包含许多模型数据点。
文档编号G01V1/30GK1237256SQ98801207
公开日1999年12月1日 申请日期1998年1月30日 优先权日1997年1月31日
发明者德尼斯·B·尼夫, 斯科特·A·鲁尼斯特兰德, 埃德加·L·布特勒, 迈克尔·E·维诺特 申请人:菲利浦石油公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1