测定信号到达的角度的制作方法

文档序号:6138422阅读:316来源:国知局
专利名称:测定信号到达的角度的制作方法
技术领域
本发明一般地涉及无线通信系统并且,特别地,涉及一种方法和装置,用于测定由在一个无线通信系统中的一个远方单元所发送的信号的到达角度。
众所周知,使用一种基于幅度差值的到达角度估计方法(AD-AOA)可以测定在一个无线通信系统中的一个远方单元的位置。在授予Imazeki的美国专利第4,636,796号《无线电测向系统》以及授予Nossen的美国专利第4,833,478号《自动测向器天线阵列》中,叙述了这样一种AD-AOA定位方法。这两份专利作为参考文献已被收入本文。根据这样一种方法,通过分析在一个基站中介于多个天线之间的诸幅度差值,就能测定从一个远方单元发送过来的信号的到达角度。在

图1-2中说明了这样一种方法。如图1所示,被划分为扇区的基站101包括多组天线103-113,它们接收从远方单元117发送过来的信号115。显而易见,在扇区α中的天线103和105将以不同于在扇区β中的天线107和109的到达角度来接收信号117。因此,在扇区α中的天线也将以不同于在扇区β中的天线的幅度来接收信号117。正是利用在不同的天线中信号117的接收幅度的差值来测定信号117的到达角度。
图2说明作为到达角度的一个函数的信号117的衰减。如图所示,在中心线(或最大增益方向)处,处于扇区α中105°小区站点处的天线具有大约11dB的增益。从中心线偏移20°,增益略有降低,但是,处于扇区β的天线在偏离其中心线100°的这个到达角度上仅有1dB的增益,由此导致10dB的信号差值。随着信号117的到达角度远离扇区α而靠近扇区β,这个差值将逐渐减少。在AD-AOA测定方法中,正是利用了在每一个扇区天线中介于信号幅度之间的这种关系。可以利用一份对照表来建立所测得的幅度差值与一个到达角度之间的等同关系。
在一个陆地移动通信环境中,来自各远方单元的接收信号经受着多径散射。换句话说,由一个用户发送的一组信号在它被一部接收机接收之前经受了多径反射,并且这些反射引起即将被接收机所接收的已发射信号的“回声”。这些回声通常具有不同幅度和不同时延,由此导致从每一个用户处接收的一组信号实际上包含多个信号(一个首先到达的信号,或标记,及其回声),每一个信号都具有一个不同的幅度,到达角度,以及时延。由于现有技术的AD-AOA方法没有考虑这样的多径散射,使得一个到达角度的任何测定都受到多径散射的污染。相应地,现有技术的AD-AOA方法不能保证在所有天线上的接收机增益都相等。由于不能做到这一点,所以,所测得的任何到达角度都叠加了可察觉的误差。
由于现有技术的各种AD-AOA方法都没有考虑多径散射,以及不能保证在所有天线上的接收机增益都相等,使得现有技术的各种AD-AOA干涉方法在任何到达角度的估计上都是有缺陷的。因此,需要有一种用测定在一个无线通信系统中来自远方单元(的信号)的到达角度的方法与装置,这种方法与装置由于考虑到接收信号的多径发射,还考虑到不均等的诸接收机增益,从而获得改进了的AD-AOA估计。
图1说明在一个无线通信系统中,基于幅度差值的到达角度(AD-AOA)测定方法的使用。
图2说明作为到达角度的一个函数的射频(RF)信号的衰减。
图3是根据本发明的优选实施例的一个通信系统的方框图。
图4说明经受着多径发射的一组射频信号的接收。
图5是根据本发明的优选实施例的、示于图3的放大器的方框图。
图6是说明根据本发明的优选实施例的、示于图3的基站的工作情况的流程图。
总的来说,通过利用基于幅度差值的到达角度估计(AD-AOA)方法,可以测定在一个无线通信系统中的一个远方单元的位置。尤其是,来自一组已经经受了多径散射的信号的一束标记射线被多组天线所接收。在每一组天线处所接收的诸标记射线被一个信号组合器与平均器加以组合。信号组合器与平均器随即在多个功率控制分组上求出已叠加的标记射线的能量的平均值,以测定已叠加的标记射线的一个精确的能量水平。已叠加的标记射线的能量平均值,连同在其他扇区的已叠加的标记射线的能量平均值一起,随即被输出到一部AOA计算机。对从每一个扇区接收的已叠加的标记射线的能量数值进行分析,以测定一个适当的到达角度。
本发明完成了一种用于测定在一个通信系统中的远方单元的位置的方法。本方法包括在一个划分为扇区的基站中存在的一组第1和一组第2天线上接收一组射频信号,该射频信号包括通过经受多径发射而产生的多束射线,以及从在第1和第2天线处接收的多束射线中识别出的一束标记射线。通过分析在第1和第2天线处所接收的标记射线,就能测定该射频信号的到达角度。在本发明的优选实施例中,通过测定在第1和第2天线处所识别的标记射线的一个能量数值,并随后从在第1和第2天线处所识别的标记射线的能量数值测定一个到达角度,就能测定该到达角度。
本发明还完成了一种用于测定在一个通信系统中的远方单元位置的方法。该方法包括在存在于一个划分为扇区的基站中的一个第1扇区内的一组第1天线处接收一组射频信号的诸步骤。在存在于一个划分为扇区的基站中的一个第1扇区内的一组第2天线附带地接收该射频信号。在位于该扇区内的每一组天线处识别出一束标记射线,并且这些标记射线被叠加,以便产生一束已叠加的标记射线。最后根据该已被叠加的标记射线来测定一个到达角度。特别是,通过测定已叠加的标记射线的一个第1能量数值,以及将在一个第3天线处接收的标记射线跟在一个第4天线处接收的标记射线相加,以产生一个第2已叠加的标记射线,就能测定一个到达角度。根据第1和第2能量数值,就能测定第2已叠加的标记射线的一个能量数值以及测定一个到达角度。
最后,本发明完成了一种用于测定在一个通信系统中的远方单元位置的装置。该装置包括在存在于一个划分为扇区的基站中的一部第1接收机,该第1接收机具有一个射频(RF)信号输入以及具有一束标记射线作为一个输出。该标记射线由经受着多径散射的射频信号产生。该装置还包括在存在于一个划分为扇区的基站中的一部第2接收机,该第2接收机具有一个第2射频信号输入以及具有标记射线作为一个输出。最后,该接收机含有一个到达角度计算机,它具有作为输入的来自第1接收机的标记射线以及来自第2接收机的标记射线,并且具有作为一个输出的射频信号的一个到达角度。
图3是根据本发明的优选实施例的一个通信系统300的方框图。在本发明的这个优选实施例中,通信系统300利用一种码分多址(CDMA)协议,详见电信工业协会/电子工业协会暂行标准IS-95A《用于双模宽带扩频蜂窝系统的移动站-基站兼容性标准》,电信工业协会,华盛顿特区,1993年7月(IS-95A),该标准作为参考文献已被收入本文。虽然在本发明的优选实施例中,通信系统300利用了一种CDMA系统协议,但是通信系统300也可以利用其他的系统协议,例如,但不局限于,窄带先进移动电话业务(NAMPS)协议,先进移动电话业务(AMPS)协议,个人数字蜂窝(PDC)协议,全球移动通信系统(GSM)协议,双向寻呼协议,或者美国数字蜂窝(USDC)协议。
如图所示,通信系统300包括划分为扇区的基站101,它包括3个扇区,基站101的每一个扇区具有并行的点天线103和105,它们被连接到各自的接收机303和305。虽然基站101被表示为一个3扇区的基站,但是在本发明的别的诸实施例中,基站101也可以含有任意数目的扇区。接收机303和305被先后连接到信号组合器与平均器307以及基站电路317。如图所示,信号组合器与平均器307被连接到AOA计算机309,它具有一个通往基站控制器(BSC)311的输出端。虽然在本发明的优选实施例中,AOA计算机被表示为处于基站101之内,但是在本发明的一个别的实施例中,AOA计算机可以位于通信系统300以内的任何地方(例如,在BSC 311里面)。虽然在图3中没有示出,但是天线103和105,接收机303和305,以及信号组合器307在基站101的每一个扇区中都是相同的,来自每一个信号组合器与平均器307的输出都被送往AOA计算机309。
根据本发明的优选实施例的通信系统300的工作情况如下在天线103和105处(也可能在通信系统300以内的其他诸天线处),已编码的扩频数字信号117被接收。在本发明的优选实施例中,信号117含有来自各个远方单元的多个频率以及在时间上重叠的诸编码信号。这些信号中的每一个被同时地以相同的射频(RF)被发送,并且仅仅借助于它的特定的调制与扩频方式来互相区分。换句话说,在一部基站接收机处所接收的上行信号是每一个已发射信号的复合信号,并且只有在去扩频和解调之后,一个个别用户的信号才是可以区分的。信号117被放大器319和321放大后,得到已放大的信号340和341。诸信号340和341被分别地输入到去扩频器321和327,在那里它们被去扩频,并且作为诸去扩频信号342和343被分别地输出到解调器323和329。诸信号342和343(代表来自一个单独的远方单元的传输信号)随即被解调为同相分量(I)344以及正交分量(Q)345。如同上面所讨论的那样,诸分量I和Q在被接收之前经受了多径反射,并且这些反射引起将被接收机303和305输出的诸分量I和Q的回声。如图4所示,这些回声一般地具有不同的幅度以及不同的时延,并因此导致每一个远方单元实际上含有多种分量(标记分量401及其回声403和405),其中的每一个各具有一个不同的幅度,到达角度,以及时延。为了简单起见,虽然在本发明的优选实施例中,诸接收机303和305针对信号117的每一个分量401、403和405各自分配了单独的去扩频器/解调器对(321/323以及327/329),但在图3中所表示的是标记分量401以及它的回声403和405出自一个单独的去扩频器/解调器组合。
接着,接收机303和305同时将诸分量I和Q以及它们的回声(诸信号344和345)输出到信号组合器与平均器307以及基站电路317。在本发明的优选实施例中,基站电路317包括为实现在IS-95A中所描述的每一个远方单元的I和Q分量的标准的CDMA组合与解码所需的电路。例如,现有技术的组合器331从每一部接收机303和305那里接收I和Q诸分量以及它们的回声,并将诸回声加以组合,以形成一组相干信号[即,6个分量被接收(从每一根天线接收3组)然后诸分量被组合为一个]。换句话说,含有特定的远方单元的传输信号(已经经受散射)的诸信号344和345作为去扩频诸信号342和343,分别从去扩频器321和327输出。诸去扩频信号342和343分别被解调器323和329解调,由此得到从远方单元发送过来的6组去扩频解调信号(从每一根天线接收3组),其中的每一组都含有I和Q分量。现有技术的组合器331将所接收到的所有诸分量和诸回声组合在一起,以形成一组相干的I和Q信号。这个信号被分为预定长度的采样信号的诸分组(例如,长度为64个样本的诸分组),它们被单独地输入到正交解码器333,以便进行后继的解码运算。
在本发明的优选实施例中,对于一个需要进行AD-AOA估计的远方单元,其I和Q诸分量以及诸回声进入信号组合器与平均器307并进行信号组合,使得个别的I和Q分量被叠加,由此得到叠加后的I和Q分量。换句话说,来自天线103的最先到达的分量(即,标记射线401)不跟诸回声403或405叠加,而是跟来自天线105的标记射线401叠加,以形成一根叠加的标记射线。此外,来自天线103的回声403跟来自天线105的回声403叠加,并且来自天线103的回声405跟来自天线105的回声405叠加。在本发明的优选实施例中,这样的叠加导致3个I和3个Q分量。在本发明的优选实施例中,信号组合器与平均器307在多个功率控制分组上对已叠加的标记射线的能量进行平均运算,以便确定标记射线401的一个精确的能量水平。
随后,已叠加的标记射线的能量平均值,连同在其他扇区的已叠加的标记射线的能量平均值一起,被输出到AOA计算机309。对每一个扇区的标记射线的能量数值进行分析,以确定适当的到达角度。在本发明的优选实施例中,使用将在下面叙述的AD-AOA技术来实现这一步。一旦由AOA计算机确定了信号117的实际的到达角度,它就被输出到BSC 311以及定位服务中心313。
在实施本发明的优选实施例中可能遇到的一个问题就是,到达一个扇区的一组信号幅度可能大于到达其余两个扇区中的一个的信号幅度(后者可以低到如此程度,使得能量测量被噪声所污染以致变为无用)。在本发明的优选实施例中,使用了多种方法来智胜这个问题。例如,通过在一段时间内将功率控制位设置为高,或者通过请求由远方单元发出一段特定的报文,就能增大信号117。后一种方法如同在授予Bruckert等人的美国专利第_号(attorney docket号码CE-03200R)《在一个通信系统中用于测定远方单元位置的方法与装置》中所描述的那样,此项专利已转让予本发明的受让人。然后,通过发送一个已知信号,或者通过解调最强的信号并用它来解调较弱的诸信号,就能以相干方式解调该信号。
在本发明的优选实施例中,诸放大器319和325使用自动增益控制(AGC),如同在授予Turney等人的美国专利第4,334,185号《一种具有恒定响应时间的自动增益控制电路》中所描述的那样,此项专利已转让予本发明的受让人。因此,从诸放大器319和325输出的诸信号340和341的幅度被保持恒定。AGC导致不同天线之间以及不同扇区之间不匹配的诸接收机增益。例如,到达一对分集天线的中心线的一组信号应当具有相同的幅度,如果它被移动到另一个扇区的中心线那里的话。由于使用了AGC,就不会出现这种情形。因此,对具有不同增益的诸放大器应当进行调适,以便抵消AGC的效果。在本发明的优选实施例中,通过用一组已知幅度的信号来校准每一部接收机,就能实现这一步。尤其是,以周期性的间隔,将一个校准信号插入到天线103和105(以及在通信系统300以内的所有天线)的基底之上。在校准信号的基础上进行正常的AGC,并且一个AGC数值(放大器增益数值)被输出到信号组合器与平均器307。在图3中,这分别地被表示为放大器319和325的诸输出信号346和347。信号组合器与平均器307利用AGC数值346和347来相应地标定I信号344和Q信号345。
图5是根据本发明的优选实施例的、示于图3的一个放大器的一份方框图。该放大器包括第1放大器501,声表面波(SAW)滤波器503,本地振荡器505,模拟到数字(A/D)转换器507,以及AGC放大器509。除了A/D转换器的输出511以外,还有AGC增益数值的输出513以及放大器的输出340、341。AGC放大器509的输出是出现在大约100微秒的信号电平增高时间内的一个恒定电压。换句话说,在一个1.25毫秒功率控制分组(PCG)间隔内的平均功率是恒定的,对于所有的间隔和所有天线分支来说,情况也与此相同。在本发明的优选实施例中,AGC是足够地快,它能跟踪整体衰落,甚至在整体的脉冲振幅调制由于语音编码器速率适应(而出现急剧变化)(一种繁忙时段现象)时也能跟踪。在已放大信号340、341中,一束射线的能量简单地就是在输出端511处的能量乘以AGC增益(GAGC)。在本发明的优选实施例中,在一个沃尔什符号的中部,这个增益没有发生改变,因为(若发生改变),将影响到解调器的输出,并且在很重的通信负荷下,可能给出一个错误的结果。
叉指式解调器可以向信号组合器与于平均器307提供被选定的射线的功率的一个估计(Pmcc),作为总的功率的一部分(前面已经表明,它是一个常数)。因此,在AGC放大器前面的功率为Pmcc/GAGC。从天线输入端到A/D转换器输出端的增益(GB)由两级校准来建立,首先是通过一次尝试来测量增益的固定部分,其次是定期校准,测量时变部分。可以近似地认为,在定位间隔的持续时间以内,分支增益的变化是固定的。α和β扇区的信号电平为Aα=(∑(Pmcc,1,α/GAGC,1,α)/GB,1,α+∑(Pmcc,2,α/GAGC,2,α)/GB,2,α)/2Aβ=(∑((Pmcc,1,β/GAGC,1,β)/GB,1,β+∑(Pmcc,2,β/GAGC,2,β)/GB,2,β)/2
式中Pmcc,N,x=来自第x扇区中的第N组天线的平均信号功率,以及GAGC,N,x=在第x扇区中的第N组天线分支的AGC增益。
所希望得到的统计数字仅仅是比值Aα/Aβ。典型地,Pmcc是通过在一个功率控制分组(PCG)中求平均值而建立的,由于在不同的PCG中,GAGC-可能发生改变,这意味着项Pmcc/GAGC必须局限于一个PCG之内。在本发明的一个可供选择的实施例中,两者中的较大者被选择在叠加运算中使用,而不是将两个信号分支求平均值。
现在转到解调器。来自一组天线的一个叉指的输出344、345提供了所选定的信号幅度的一个估计。实际上,叉指电压输出(v)是信号电压(s)以及一个具有方差=(已放大信号-Pmcc)/64的噪声项(n)之和v=s(t)+n(t)假设信号为已知,为了改进此项估计,在进行平方运算之前,至少在一个PCG的持续时间内,在一个含有k个样本的间隔中,通过矢量求和而得出v。该方程式(线性,不是分贝)为Vavg=(∑s+∑n)/6=s+∑n/6针对Pmcc求解,得Pmcc=s2=Vavg2-∑n2/36-2*s*∑n/6-2*∑(ninj)/36典型地,vavg2是解调器的输出,并且在另外一处被用来设置pcb的极性。若在两个直流项上进行了充分的平均运算以减少两个上述交流项加上一个由于加权的每个PCG的GAGC而产生的一个附加项的影响,用它的期望值来置换n2,则下列近似关系成立
Pmcc=s2≈Vavg2-var(n)/6即使这样,若信号项跟噪声项太接近,则在进一步的处理步骤中,就不应当使用该数值。
有两种用于估计n的方差的方法。请注意已放大的信号=∑(Walsh 0到63)2,式中,Walsh N=在信号的解调中所使用的快速哈马德变换器的第N个输出口的值。
对于s为较小值时var(n)≈(已放大的信号-Vavg2)/63≈已放大的信号/64或,var(n)≈(∑Walsh(i)2-V2)/63通过在前一式中在多个PCG上求出平均值,或者在后一方程式中对诸沃尔什符号求出平均值,都能作出一个优良的估计。最后,若被放大的信号同样地是一个常数。则可以用分析方法找到var(n)。
图6是一份流程图,说明根据本发明的优选实施例的、示于图3的基站的工作情况。逻辑流程开始于步骤601,在这个步骤中,一组射频信号117在一个基站扇区被接收。在本发明的优选实施例中,为了从空间分集中得到好处,每一个扇区用两组接收天线来接收射频信号117。下一步,在步骤605,射频信号117被放大、去扩频和解调。在步骤610。在两组扇区天线处所接收的标记射线被组合,并且随后在多个功率控制分组上进行平均运算(步骤615)。在本发明的优选实施例中,已叠加的标记射线在一个功率控制分组上进行平均运算,以确定该标记射线的能量的一次精确测量。然后,通过一个AGC增益数值对该标记射线的能量进行标定(步骤616),并连同在其他各基站扇区所接收的诸标记射线的已标定的能量平均值一起送往AOA计算机(步骤620),并且在步骤625,利用各种AD-AOA方法来确定射频信号117的一个到达角度。更具体地说,通过对来自每一组天线的16个已标定的功率控制分组能量平均值进行叠加运算,在最大和以及次最大和之间求出分贝差值,并且在联系幅度差值以及到达角度的一份对照表中进行查找,就能确定射频信号117的到达角度。
在参照于一个特定的实施例对本发明已经具体地加以展现和描述的同时,专业人士应当理解,在不背离本发明的精神实质和范围的前提下,可以在形式上和细节上作出各种更改。并且指望所有这些更改都处于下列的权利要求书的范围之内。
权利要求书(修改)[国际专利局于1998年6月12日收到;原来的权利要求7-8被撤销;其余的权利要求不变(1页)]5.如权利要求1所述方法,其中测定到达角度的步骤包括下列诸步骤测定在第1天线处所接收的标记射线的一个第1能量;测定在第2天线处所接收的标记射线的一个第2能量;测定一个放大器增益数值;通过放大器增益数值,调整该标记射线的第1和第2能量;以及根据已调整的该标记射线的第1能量,测定一个到达角度。
6.如权利要求1所述方法,其中该通信系统是一个码分多址(CDMA)通信系统。
权利要求
1.一种用于测定在一个通信系统中的一个远方单元的到达角度的方法,本方法包括下列诸步骤在存在于一个已划分为扇区的基站中的一组第1天线上接收一组射频信号,该射频信号包括通过经受多径散射而产生的多束射线;在存在于一个已划分为扇区的基站中的一组第2天线上接收该射频信号,从在第1天线中所接收的多束射线中识别出一束标记射线;从在第2天线中所接收的多束射线中识别出该标记射线;从在第1和第2天线中所接收的标记射线中确定到达角度。
2.如权利要求1所述方法,其中测定到达角度的步骤包括下列诸步骤测定在第1天线处所识别的该标记射线的一个能量;测定在第2天线处所识别的该标记射线的一个能量;从在第1天线处所识别的该标记射线的能量以及从在第2天线处所识别的该标记射线的能量来测定该到达角度。
3.如权利要求2所述方法,其中确定该标记射线的能量的步骤包括在多个功率控制分组上对标记射线的能量进行平均运算。
4.如权利要求2所述方法,其中测定到达角度的步骤包括根据在第1天线处所识别的标记射线的能量与在第2天线处所识别的标记射线的能量之比来测定到达角度的诸步骤。
5.如权利要求1所述方法,其中测定到达角度的步骤包括下列诸步骤测定在第1天线处所接收的标记射线的一个第1能量;测定在第2天线处所接收的标记射线的一个第2能量;测定一个放大器增益数值;通过放大器增益数值,调整该标记射线的第1和第2能量;以及根据已调整的该标记射线的第1能量,测定一个到达角度。
6.如权利要求1所述方法,其中该通信系统是一个码分多址(CDMA)通信系统。
7.一种用于测定在一个通信系统中的一个远方单元的(信号)到达角度的装置,本装置包括一部存在于一个已划分为扇区的基站中的第1接收机,该第1接收机具有一个射频(RF)信号输入,并且具有作为一个输出的一束标记射线,该标记射线由经受着多径散射的射频信号产生;一部存在于一个已划分为扇区的基站中的第2接收机,该第2接收机具有一个第2射频(RF)信号输入,并且具有作为一个输出的一束标记射线;以及一部到达角度计算机具有作为输入的来自第1接收机的标记射线以及来自第2接收机的标记射线,还具有作为一个输出的射频信号的到达角度。
8.如权利要求13所述装置还包括一个信号组合器与平均器,它具有作为输入的来自第1接收机的标记射线以及来自第2接收机的标记射线,还具有作为一个输出的来自第1和第2接收机的标记射线的一个能量平均值。
全文摘要
通过利用一种基于幅度差值的到达角度估计方法(AD-AOA)来测定在一个无线通信系统中的一个远方单元的位置。特别是,来自一组已经经受多径散射的信号(117)的一束标记射线(401)被多组天线(103和105)所接收。在每一组天线处所接收的标记射线(401)被一个信号组合器与平均器(307)组合在一起。信号组合器与平均器(307)随即在多个功率控制分组上对已叠加的标记射线的能量进行平均运算,以便针对已叠加的标记射线确定一个精确的能量水平。接着,已叠加的标记射线的能量平均值,连同在其他各扇区的已叠加的标记射线的能量平均值一起。被输出到一部到达角度计算机(309)。对从每一个扇区接收的已叠加的标记射线的能量数值进行分析,以便确定一个适当的到达角度。
文档编号G01S3/02GK1248326SQ98802813
公开日2000年3月22日 申请日期1998年1月8日 优先权日1997年2月24日
发明者尤金·J·布鲁科尔特 申请人:摩托罗拉公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1