一种高频宽带大功率发射圆柱阵实现方法

文档序号:8281349阅读:543来源:国知局
一种高频宽带大功率发射圆柱阵实现方法
【技术领域】
[0001]本发明属于水声测量领域,具体涉及一种高频宽带大功率发射圆柱阵实现方法。
【背景技术】
[0002]随着信号处理技术及DSP硬件的发展,信号处理机所能处理的频段越来越宽,因此对换能器提出了更高的带宽要求。另外,随着水声技术的发展,高频宽带换能器在军事和民用领域的应用越来越广泛,例如反蛙人声纳、水下成像声纳、浅海多波束声纳等,这些声纳都需要宽带宽波束工作。
[0003]高频宽带宽波束换能器通常采用陶瓷颗粒拼装加匹配层技术,理论上的带宽可以达到一个倍频程,水平指向性起伏也可达到3分贝,但同一个换能器如何兼顾水平180°和360°发射,且保持相同的起伏是需要解决的问题。另外,反蛙人声纳通常工作在浅水区,混响严重,一般要求垂直维的发射旁瓣尽可能低,因此如何有效地实现低旁瓣发射也是值得研宄的问题。最后,岸基反蛙人声纳基阵往往布放在水体中央,与岸边有一定距离,因此还需解决高频大功率信号的远程传输问题。

【发明内容】

[0004]本发明的目的在于克服现有技术存在的不足,而提供一种高频宽带大功率发射圆柱阵实现方法,具有工作频带宽、可兼顾水平180°和360°发射、垂直旁瓣低、可远距离大功率发射的优点。特别是当180°发射时可以很好地解决由于发射换能器截断而引起的边缘指向性起伏大的问题。
[0005]本发明的目的是通过如下技术方案来完成的。这种高频宽带大功率发射圆柱阵实现方法,该方法包括以下步骤:
[0006]步骤一:根据工作中心频率f及陶瓷颗粒的纵向声速V确定陶瓷颗粒的高度h,即h = v/ (2f),之后确定陶瓷颗粒的长度a和宽度b ;
[0007]步骤二:根据所需的带宽选择陶瓷颗粒与匹配层之间的占空比γ,占空比是指陶瓷颗粒与匹配层粘接的面积与匹配层面积之比;
[0008]步骤三:根据占空比选择支撑骨架底盘的厚度t、支撑骨架横挡的厚度d,使得(a*b)/((a+d)*(b+2t)) = Y,支撑骨架后挡仅用来定位陶瓷颗粒,使所有陶瓷颗粒拼装成一个圆环;
[0009]步骤四:按步骤三计算的尺寸加工一个支撑骨架,再加工一个带有销钉孔的定位铝环,套合在支撑骨架内部,用于多个环状铝心的定位;
[0010]步骤五:把陶瓷颗粒放入支撑骨架横挡之中,陶瓷颗粒的负极朝外、正极朝内;
[0011]步骤六:第一种圆环换能器连线方式为:把陶瓷颗粒分成相同的A、B两组,每组的正、负极分别并联起来,总共引出四根导线;
[0012]步骤七:第二种圆环换能器连线方式为:把陶瓷颗分成数目上不同的A、B两组,其中A组比B组多两个陶瓷颗粒,每组的正、负极分别并联起来,总共引出四根导线;
[0013]步骤八:第三种圆环换能器连线方式为:把陶瓷颗分成数目上不同的A、B两组,其中A组比B组多四个陶瓷颗粒,每组的正、负极分别并联起来,总共引出四根导线;
[0014]步骤九:以此类推,可以得到连接不同陶瓷颗粒数的多种连线方式;
[0015]步骤十:盖上上盖板,灌注匹配层,并把匹配层打磨到相应的厚度和高度,这样得到多种不同连线方式的单个圆环换能器;
[0016]步骤十一:在组阵安装时,把第一种圆环换能器放置在最上层和最下层,第二种圆环换能器放置在顺数第二层和倒数第二层,以此类推,且使所有A组陶瓷颗粒的中心位置对齐,这样可以得到由多种不同连线方式的圆环换能器组成的圆柱阵;
[0017]步骤十二:用销钉把多个圆环换能器通过定位铝环上的销钉孔上下同心装配好,且在每两个圆环换能器之间插入一层去耦软木橡皮;
[0018]步骤十三:在装配好的圆环换能器外部灌注聚胺脂水密层,其厚度不小于4_ ;
[0019]步骤十四:选出最中间连续M层换能器,把这些换能器的所有A组正、负极分别并联起来,由两根导线引出,所有B组正、负极分别并联起来,由两根导线引出;
[0020]步骤十五:从上半部分其余换能器中选出连续N层换能器,把这些换能器的所有A组正、负极串联起来,由两根导线引出,所有B组正、负极串联起来,由两根导线引出;从下半部分其余换能器中类似地选出连续N层换能器,把这些换能器的所有A组正、负极串联起来,由两根导线引出,所有B组正、负极串联起来,由两根导线引出;
[0021]步骤十六:重复步骤十五,并把所有串并联后的与A组相关的正、负极分别并联,与B组相关的正、负极分别并联,这样就实现了对每个圆环换能器的幅度加权,其加权值对应关系为层换能器加权值为1,N层换能器加权值为1/N,以此类推;
[0022]步骤十七:在步骤十六的基础上,把所有与A组相关的正极连线与发射机正极相连,把所有与A组相关的负极连线与发射机负极相连,实现180°的发射;
[0023]步骤十八:在步骤十六的基础上,把所有与A、B组正极相关的连线与发射机正极相连,把所有与A、B组负极相关的连线与发射机负极相连,实现360°的发射;
[0024]步骤十九:最后采用同轴缆作为传输缆,有效减小高频大功率信号的远程传输衰减。
[0025]所述单个圆环换能器最大外径在二十倍的工作波长以上。
[0026]所述圆柱阵最中间的换能器A组陶瓷颗粒个数最多,然后向两边递减,最上层和最下层换能器A组陶瓷颗粒个数最少。
[0027]所述圆柱阵由多个换能器堆叠而成,且通过不同个数换能器的串、并联实现幅度加权。
[0028]本发明的有益效果为:
[0029]1、首先针对180°发射,采用不同层发射陶瓷颗粒个数不同的方法,减小了边缘波束起伏大的问题;其次针对垂直维旁瓣大的问题,采用串并联的方式实现幅度加权以减小旁瓣;最后采用同轴缆传输的方式,减小高频大功率信号远程传输衰减问题。
[0030]2、结构简单、工艺可靠、水平波束起伏小、垂直波束旁瓣低、可180°或360°发射。
【附图说明】
[0031]图1:本发明一个较佳实施例的单个换能器结构分解图
[0032]图2:本发明一个较佳实施例的发射圆柱阵结构分解图
[0033]图3:本发明一个较佳实施例的180°发射水平波束图。
[0034]附图标记说明:1 一支撑骨架底盘、2 —支撑骨架横挡、3 —支撑骨架后挡、4 一定位铝环、5 —陶瓷颗粒、6 —盖板、7 —匹配层、8-硬质泡沫、9 一单个圆环换能器、10 —下盖板、11 一上盖板、12 —定位螺栓、13 —聚氨醋水密层。
【具体实施方式】
[0035]下面将结合附图和实施例对本发明做详细的介绍:
[0036]参见图1,为采用本发明实现的一种高频宽带大功率发射圆柱阵实现方法中的单个圆环换能器,其采用ABS塑料作为支撑骨架,硬铝作为定位环,环氧板作为盖板。
[0037]本实施例中单个圆环换能器采用180个锆钛酸铅(PZT-4)压电陶瓷颗粒,每片陶瓷颗粒的长宽高尺寸为17mmX8mmX8mm。支撑骨架底盘厚1mm,支撑骨架横挡厚1mm,支撑骨架后挡的半径为235mm。盖板厚1mm。匹配层高度为10mm,径向厚度为8mm,硬质泡沫8用于去親。
[0038]参见图2,为采用本发明实现的一种高频宽带大功率发射圆柱阵,本实施例中圆柱阵由9个圆环换能器上下同心堆叠而成。图中:9 一单个圆环换能器、10 —下盖板、11 一上盖板、12 —定位螺栓、13 —聚氨醋水密层。下盖板10、上盖板11通过定位螺栓12定位固定连接。
[0039]本实施例中圆柱阵由9个圆环换能器上下同心堆叠而成,中间5个换能器并联,上面两个换能器串联,下面两个换能器串联,最后全部并联,从而实现了 0.5:0.5:1:1:1:1:I:0.5:0.5的幅度加权。
[0040]本实施例中圆柱阵采用特性阻抗为50 Ω的同轴缆作为传输缆。
[0041]参见图3,为采用本发明实现的一个较佳实施例的180°发射水平波束图。
[0042]这种高频宽带大功率发射圆柱阵实现方法,该方法包括以下步骤:
[0043]步骤一:根据工作中心频率f及陶瓷颗粒的纵向声速V确定陶瓷颗粒的高度h,即h = v/ (2f),之后确定陶瓷颗粒的长度a和宽度b ;
[0044]步骤二:根据所需的带宽选择陶瓷颗粒与匹配层之间的占空比γ,占空比是指陶瓷颗粒与匹配层粘接的面积与匹配层面积之比;
[0045]步骤三:根据占空比选择支撑骨架底盘I的厚度t、支
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1