基于极值理论的卫星导航地基增强系统的误差包络方法

文档序号:8921523阅读:962来源:国知局
基于极值理论的卫星导航地基增强系统的误差包络方法
【技术领域】
[0001] 本发明涉及卫星导航技术,尤其涉及一种基于极值理论的卫星导航地基增强系统 的误差包络方法。
【背景技术】
[0002] 地基增强系统(Ground-Based Augmentation Systems,简称为:GBAS)采用差分技 术提高飞机定位精度。目前GBAS已可以满足最高到CAT I的民航运行需求,可作为主用甚 至唯一导航系统使用,从而使卫星导航系统替代传统的陆基无线电导航系统成为可能。
[0003] 为保证飞行安全,GBAS的机载设备在实时进行差分定位的同时,还要计算指定风 险概率下定位误差的上限,称为保护级。在GBAS中,地面站实时计算视界内每颗卫星的伪 距校正值,同时,地面站假设伪距校正误差服从零均值高斯分布,并估计其标准差〇 每颗卫星的伪距校正值及校正误差标准差被广播给飞机。飞机假设地面站发送的伪距校正 值的误差是零均值高斯分布的,标准差为〇 ^gnd,以此来计算保护级。
[0004] 但在实际中,地面反射多径等引起的误差可能是非高斯的、非零均值的,或者没有 足够的数据来验证实际误差是高斯分布的,导致实际误差的标准差超过了 0 Pund值,造成 潜在的完好性风险。因此,为了补偿假设的误差概率分布与真实误差概率分布之间的差,必 须找到一定的方法来处理误差的这些分布特性,以保证保护级的可靠性,并且这个方法不 需要误差必须是高斯分布、方差已知的。
[0005] 目前的GBAS中普遍使用了一种称为包络的技术来解决此问题,首先根据实际观 测值计算误差标准差的估计值〇Pnd_est,然后计算放大因子(Inflation Factor)kinf,并根 据公式:kinfX o ,使得计算出的〇卩^值能够包络(Overbound)实际误差, 从而机载接收机根据〇 Pqnd计算的保护级可以满足完好性需求。
[0006] 然而,实际中可用于计算误差包络的独立样本数量与误差包络所要保护的风险概 率相比极其有限,即使在真实误差满足零均值高斯分布的条件下,也仍然需要考虑由于使 用的样本数量有限所带来的不确定性。此外,由于真实误差来源于具有不同标准差的总体 分布、处理过程中导致的误差混合和不同参考接收机数据间的相关性等问题,导致真实误 差呈现厚尾分布,并且其真实分布未知,而现有方法对分布尾进行了保守的假设,导致所计 算出的放大因子过大,从而导致系统的连续性降低。

【发明内容】

[0007] 本发明实施例提供一种基于极值理论的卫星导航地基增强系统的误差包络方法, 以克服现有方法对分布尾进行了保守的假设,导致所计算出的放大因子过大,从而导致系 统的连续性降低的问题。
[0008] 本发明第一方面提供一种基于极值理论的卫星导航地基增强系统的误差包络方 法,包括:
[0009] 获取至少两组伪距误差校正样本值;
[0010] 对每组伪距误差校正样本值执行下述操作:
[0011] 确定本组伪距误差校正样本值对应的具有指定风险的第一分位数和第一标准 差;
[0012] 根据地基增强系统GBAS总的运行风险在标准高斯分布下所述GBAS总的运行风险 对应的第二分位数;
[0013] 根据所述第一分位数、所述第二分位数和所述第一标准差确定本组伪距误差校正 样本值对应的放大因子。
[0014] 结合第一方面,在第一方面的第一种可能的实现方式中,所述确定本组伪距误差 校正样本值对应的具有指定风险的第一分位数,包括:
[0015] 确定所述本组伪距误差校正样本值对应的阈值;
[0016] 根据重采样法获得所述本组伪距误差校正样本值对应的至少两组重采样样本 值;
[0017] 根据所述本组伪距误差校正样本值对应的阈值和所述本组伪距误差校正样本值 对应的所述至少两组重采样样本值中的每组重采样样本值确定每组重采样样本值中的超 出量样本值,所述超出量样本值为所述每组重采样样本值中大于所述阈值的值与所述阈值 的差值;
[0018] 根据所述超出量样本值确定所述第一分位数。
[0019] 结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式 中,所述根据所述超出量样本值确定所述第一分位数,包括:
[0020] 根据本组重采样样本值对应的超出量样本值确定所述本组重采样样本值中超过 所述阈值的第一概率;
[0021] 确定所述本组重采样样本值对应的超出量样本值的第二标准差;
[0022] 根据所述第一概率和所述第二标准差确定所述第一分位数。
[0023] 结合第一方面的第二种可能的实现方式,在第一方面的第三种可能的实现方式 中,所述根据所述第一概率和所述第二标准差确定所述第一分位数,包括:
[0024] 根据所述第一概率确定指定置信度的第一参数置信限值;
[0025] 根据所述第二标准差确定指定置信度的第二参数置信限值;
[0026] 根据所述第一参数置信限值和所述第二参数置信限值确定所述第一分位数。
[0027] 结合第一方面的第一种可能的实现方式,在第一方面的第四种可能的实现方式 中,所述确定所述本组伪距误差校正样本值对应的阈值,包括:
[0028] 根据平均超出量函数MEF确定所述本组伪距误差校正样本值对应的阈值。
[0029] 结合第一方面,在第一方面的第五种可能的实现方式中,所述获取至少两组伪距 误差校正样本值,包括:
[0030] 根据预设时间间隔获取至少两个伪距误差校正样本值;
[0031] 对所述至少两个伪距误差校正样本值进行分组得到至少两组伪距误差校正样本 值。
[0032] 本发明中,获取至少两组伪距误差校正样本值,并确定各组伪距误差校正样本值 对应的具有指定风险的第一分位数和第一标准差,然后根据地基增强系统GBAS总的运行 风险确定在标准高斯分布下GBAS总的运行风险对应的第二分位数,进而根据第一分位数、 第二分位数和第一标准差确定放大因子,最后,根据放大因子确定本组伪距误差校正样本 值对应的伪距校正值,通过上述方法可以准确计算出放大因子,从而计算的伪距校正值能 够包络实际误差,有效提高系统的连续性。
【附图说明】
[0033] 为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现 有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发 明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以 根据这些附图获得其他的附图。
[0034]图1为本发明实施例提供的基于极值理论的卫星导航地基增强系统的误差包络 方法的流程图。
【具体实施方式】
[0035] 为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例 中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是 本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员 在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
[0036]图1为本发明实施例提供的基于极值理论的卫星导航地基增强系统的误差包络 方法的流程图,如图1所示,本实施例的方法可以包括:
[0037] 步骤101 :获取至少两组伪距误差校正样本值。
[0038] 具体的,根据预设时间间隔获取至少两个伪距误差校正样本值,然后,对至少两个 伪距误差校正样本值进行分组得到至少两组伪距误差校正样本值。
[0039] 在实际应用中,通常,GBAS地面参考站每间隔0.5秒计算得到1个当前时刻的伪 距差分校正值,对应可以得到一个伪距校正误差的样本值。然后获得全部时刻的至少两个 伪距校正误差的样本值,对全部时刻的伪距校正误差样本值进行筛选,以得到独立的伪距 校正误差样本值。
[0040] 典型的筛选方法为:首先按100秒的时间间隔对全部时刻的伪距校正误差样本值 进行采样,然后对采样后的伪距校正误差样本值按照其对应的仰角进行分组,即,仰角为0 度到5度的伪距校正误差样本值为一组,5度到10度的伪距校正误差样本值为一组,以此类 推,共得到18个分组的伪距校正误差样本值。
[0041] 步骤102 :对每组伪距误差校正样本值执行下述操作:也即,对每一组伪距校正误 差样本值分别执行步骤103至步骤105中的方法。
[0042] 例如:根据预设时间间隔获取至少50000个伪距误差校正样本值,然后对至少 50000个伪距误差校正样本值进行分组得到18组伪距误差校正样本值。
[0043] 步骤103 :确定各组伪距误差校正样本值对应的具有指定风险的第一分位数和第 一标准差。
[0044] 具体的,首先需要确定本组伪距误差校正样本值对应的阈值,设{XJ,i = 1,…, N,为经筛选的一个分组的伪距误差样本值,N为本组伪距误差样本值的个数,利用平均超出 量函数(Mean Excess Function,简称为:MEF)确定本组伪距误差校正样本值对应的阈值。
[0045] 具体的确定阈值的方法为:
[0046] 对{XJ中的伪距误差样本值按照从大到小的顺序进行排列,得到次序统计量 X#X2彡…彡X N,其中,MEF定义为:
[0048] 其中Nu为超过阈值u的样本数量,X/为伪距误差样本值中大于u的样本值,E(u) 代表大于阈值的样本的超出量的数学期望。
[0049] 在二维坐标轴中按照上述MEF的公式绘制点(u,E(u
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1