可消衰落噪声的分布式光纤振动传感系统及其解调方法

文档序号:10684590阅读:724来源:国知局
可消衰落噪声的分布式光纤振动传感系统及其解调方法
【专利摘要】一种可消衰落噪声的分布式光纤振动传感系统及其解调方法,包括:信号发生模块、窄线宽激光光源模块、扫频切光脉冲模块、环形器、传感光纤、相干接收模块、光电转换模块和数字信号处理模块;计算机通过产生多个频段不同且无重叠的数字带通滤波器,结合来自多个扫频探测光脉冲的原始数据段,得到传感光纤的反射率曲线;对反射率曲线进行移相平均处理,得到无干涉和偏振衰落的多条综合反射率曲线;对综合反射率曲线作延迟差分处理,得到多条相位差分曲线;对相位差分曲线求方差,得到一条相位方差曲线;根据相位方差曲线中的方差作振动点的判定,得到振动点的位置和振动波形;本发明设计合理,定位准确度高,可同时获得高空间分辨率和长探测距离。
【专利说明】
可消衰落噪声的分布式光纤振动传感系统及其解调方法
技术领域
[0001] 本发明涉及的是一种光纤传感领域的技术,具体是一种可消衰落噪声的分布式光 纤振动传感系统及其解调方法。
【背景技术】
[0002] 振动传感技术被广泛地应用于工程领域,比如边界入侵监测、结构健康监测、石油 管道安全监测、地震波监测等。传统的振动传感器一般是机械式或者电磁式的,存在很多问 题,比如:在强电场环境中,传统振动传感器易受电磁干扰,无法正常工作;在易燃易爆环境 中,会产生电火花,引发事故;在偏远场所,存在供电问题;无法实现分布式传感。这些缺陷 严重地限制了传统振动传感器的实际应用。
[0003] 自从20世纪70年代光纤被发明以来,光纤传感技术也随之蓬勃发展。除了可以用 于远距离高速率通信,光纤也具备感知外部物理参数的能力。利用这种敏感的特性,研究人 员发明了一系列的光纤传感器件。其中分布式光纤振动传感器是最近几年来的研究热点。 它相比于传统的振动传感器具有很多优势,比如:防水防潮;抗电磁干扰;使用安全;最重要 的是,具有分布式传感和远距离传感的能力。
[0004] 目前研究最多、使用最广泛的分布式光纤振动传感器是基于相位敏感光时域反射 仪伞-0了01?(口11&86 sensitive optical time domain reflectometry)的光纤振动传感器。 它通过发射相干性极强的光脉冲到传感光纤中,根据传感光纤中各反射点的瑞利背向散射 光干涉的结果来检测和定位振动,同时能够得到振动的时域波形。它具有系统结构紧凑、解 调算法简单、定位准确、信噪比高、灵敏度高的优点。但有一个严重的固有缺陷:空间分辨率 (即两个振动事件同时发生且能被分辨的最小距离)和最大测量长度是矛盾的。由巾-0TDR 的原理可知,高的空间分辨率要求探测脉冲的长度很短,但是短脉冲的功率很低,这便使得 探测距离受限;反之亦然。
[0005] 除了原理上的缺陷外,现有的巾-0TDR检测和定位振动的算法也有一定的问题。最 初的算法是根据瑞利背向散射光的强度变化来检测和定位振动,这被称为强度解调法。此 种算法虽然简单、易实现,但是易受噪声干扰,信噪比和灵敏度较低,而且反射光强度和振 动幅度大小是非线性关系,测量到的振动波形会失真,除此之外光偏振状态对探测结果影 响很大。之后提出一种根据瑞利背向散射光的相位变化的算法,即相位解调法。此算法信噪 比和灵敏度极高,而且因为相位变化和振动幅度是线性关系,所以相位解调法能够得到无 失真的振动波形。但相位解调法仍然存在问题:受到干涉衰落和偏振衰落的影响,许多反射 点的背向散射光的功率会非常的低,这导致这些点的相位解调出错,而相位出错的点会被 误判为振动点。这个问题导致相位解调法无法准确无误的判断振动点的位置。

【发明内容】

[0006] 本发明针对现有技术信噪比较低、无法消除偏振衰落和干涉衰落噪声等等缺陷, 提出一种可消衰落噪声的分布式光纤振动传感系统及其解调方法,通过扫频射频脉冲串信 号对传感光纤进行振动检测,返回的瑞利背向散射光与参考光拍频后采用匹配滤波器获取 相位信息,再采用"变频-移相平均"方法进行消偏振衰落和消干涉衰落,根据无衰落噪声的 相位信息准确定位振动点的位置和振动波形,信噪比高。
[0007] 本发明是通过以下技术方案实现的:
[0008] 本发明涉及一种可消衰落噪声的分布式光纤振动传感系统,包括:信号发生模块、 窄线宽激光光源模块、扫频切光脉冲模块、环形器、传感光纤、相干接收模块、光电转换模块 和数字信号处理模块,其中:信号发生模块向扫频切光脉冲模块输入放大的扫频射频脉冲 串信号,同时信号发生模块向数字信号处理模块发送触发信号;窄线宽激光光源模块产生 的超窄线宽激光分为两路,一路为探测光输入扫频切光脉冲模块,另一路为参考光输入相 干接收模块;扫频切光脉冲模块输出放大的扫频探测光脉冲串,经过环形器输入传感光纤; 传感光纤产生的瑞利背向散射光经环形器输入相干接收模块,与参考光在相干接收模块中 拍频,产生的拍频光信号输入光电转换模块;光电转换模块将拍频光信号转换为电信号,并 输入数字信号处理模块进行相位解调。
[0009] 所述的信号发生模块包括:相连的信号发生器和射频信号放大器。
[0010] 所述的信号发生器输出的扫频射频脉冲串信号包括:多个等时间间距、相同扫频 范围和相同脉冲宽度的扫频射频脉冲信号。
[0011] 所述的窄线宽激光光源模块包括:依次相连的窄线宽光纤激光器、光纤耦合器和 偏振控制器。
[0012] 优选地,所述的光纤耦合器的分光比为90:10。
[0013] 所述的扫频切光脉冲模块包括:相连的声光调制器/单边带调制器和掺饵光纤放 大器。
[0014] 所述的传感光纤为普通单模通信光纤。
[0015]所述的相干接收模块为50:50光纤親合器。
[0016]所述的光电转换模块为平衡探测器。
[0017]所述的数字信号处理模块包括:相连的数据采集卡和计算机,其中:数据采集卡对 输入的电信号进行采样,将原始数据输入计算机进行相位解调。
[0018] 本发明涉及一种基于上述系统的解调方法,计算机通过产生多个频段不同且无重 叠的数字带通滤波器,结合来自多个扫频探测光脉冲的瑞利背向散射光的原始数据段,得 到传感光纤的多条反射率曲线;采用移相平均法对反射率曲线进行消衰落处理,得到无干 涉衰落和偏振衰落的多条综合反射率曲线;对综合反射率曲线作延迟差分处理,得到多条 相位差分曲线;对相位差分曲线求方差,得到一条相位方差曲线;最后根据相位方差曲线中 的方差进行振动点的判定,得到振动点的位置和振动波形。
[0019] 所述的反射率曲线通过以下方法得到:计算机产生多个频段不同且无重叠的数字 带通滤波器,将来自多个扫频探测光脉冲的原始数据段分成与数字带通滤波器相同数量的 子数据段,将子数据段与匹配标记的数字带通滤波器作互相关运算,得到传感光纤的反射 率曲线集合。
[0020] 所述的移相平均法是指:以一条反射率曲线的共辄作为参考,与其他的反射率曲 线作相乘运算,得到相位归零的反射率曲线集合,并对相位归零的反射率曲线作平均运算, 得到无干涉衰落和偏振衰落的综合反射率曲线。
[0021] 所述的延迟差分处理是指:取各条综合反射率曲线的相位项为相位曲线,对相位 曲线进行时延,将时移前后的相位曲线作差分得到差分相位曲线。
[0022] 所述的振动点的判定是指:如果相位方差曲线中的某点的方差大于0.02,则该点 为振动点。
[0023] 所述的振动点在传感光纤上的对应位置为: ,其中为光在光纤中的传 播速度,ts为数据采集卡的采样率,ko为振动点。
[0024] 所述的振动点的振动波形为差分相位曲线中振动点处的差分相位组成的新序列。 技术效果
[0025] 与现有技术相比,本发明设计新的反射仪结构,发射长脉宽、大扫频范围的探测光 脉冲,可同时获得大的空间分辨率和长的探测距离;采用的"变频-移相平均"的相位解调算 法,能够有效消除传感光纤的反射率曲线上的由干涉衰落和偏振衰落导致的极弱点,进而 消除相位解调错误,有利于准确检测和定位到振动,并且具有高信噪比。
【附图说明】
[0026] 图1为分布式光纤振动传感系统示意图;
[0027] 图2为探测光脉冲的时频谱图;
[0028] 图3为实施例输出的曲线图;
[0029] 图中:(a)为综合反射率的模曲线,(b)为综合反射率的差分相位曲线,(c)为振动 点附近的综合反射率的模曲线,(d)为振动点附近的综合反射率的差分相位曲线;
[0030] 图4为实施例输出的振动点的振动信号谱图;
[0031]图中:(a)为第一个振动点的时域曲线图,(b)为第一个振动点的功率谱图,(c)为 第二个振动点的时域曲线图,(d)为第二个振动点的功率谱图;
[0032]图中:1为信号发生器,2为射频信号放大器,3为窄线宽光纤激光器,4为光纤耦合 器,5为声光调制器,6为掺饵光纤放大器,7为环形器,8为传感光纤,9为偏振控制器,10为 50:50光纤耦合器,11为平衡探测器,12为数据采集卡,13为计算机。
【具体实施方式】
[0033]下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行 实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施 例。 实施例1
[0034]如图1所示,本实施例包括:信号发生模块、窄线宽激光光源模块、扫频切光脉冲模 块、环形器7、传感光纤8、相干接收模块、光电转换模块和数字信号处理模块,其中:信号发 生模块向扫频切光脉冲模块输入放大的扫频射频脉冲串信号,同时信号发生模块向数字信 号处理模块发送触发信号;窄线宽激光光源模块产生的超窄线宽激光进入a端口分为两路, 一路为探测光经b端口输入扫频切光脉冲模块,另一路为参考光经c端口输入相干接收模 块;扫频切光脉冲模块输出放大的扫频探测光脉冲串,经环形器7的a端口输入并从b端口输 出至传感光纤8;传感光纤8产生的瑞利背向散射光经环形器7的b端口输入并经c端口输出 至相干接收模块,与参考光在相干接收模块中拍频,产生的拍频光信号输入光电转换模块; 光电转换模块将拍频光信号转换为电信号,并输入数字信号处理模块进行相位解调。
[0035] 所述的传感光纤8的全长为10km。
[0036] 所述的信号发生模块包括:相连的信号发生器1和射频信号放大器2。
[0037]如图2所示,所述的信号发生器1输出的扫频射频脉冲串信号包括:多个等时间间 距T、相同扫频范围F和相同脉冲宽度w的扫频射频脉冲信号。
[0038]所述的扫频射频脉冲信号的时间间距T为120ys,扫频范围F为150~250MHz,脉冲 宽度印为4ys。
[0039] 所述的窄线宽激光光源模块包括:依次相连的窄线宽光纤激光器3、光纤耦合器4 和偏振控制器9。
[0040] 所述的光纤耦合器4的分光比为90:10。
[0041 ] 所述的扫频切光脉冲模块包括:相连的声光调制器5和掺t耳光纤放大器6。
[0042]所述的传感光纤8为普通单模通信光纤。
[0043]所述的相干接收模块为50:50光纤耦合器10。
[0044]所述的光电转换模块为平衡探测器11。
[0045]所述的平衡探测器11的带宽为400MHz。
[0046]所述的数字信号处理模块包括:相连的数据采集卡12和计算机13,其中:数据采集 卡12对输入的电信号进行采样,将原始数据输入计算机13进行相位解调。
[0047]所述的数据采集卡12的采样率ts为lGSa/s,分辨率为8bit。
[0048]本实施例涉及上述系统的解调方法,为"变频-移相平均"法,包括以下步骤:
[0049]步骤1、计算机13将数据采集卡12采样的来自N个扫频探测光脉冲的原始数据段按 时间顺序标记,即:&11(1〇;1^=1,-_,1(};11=1,-_,1'1,其中 :1(为来自单个扫频探测光脉冲的 原始数据的数据点数;并产生L个频段不同且无重叠的数字带通滤波器{hWk) ;k=l,…, K};1 = 1,…,L,将标记后的原始数据段分成L个子数据段再行标记,即:{xuahkzl,…, K} ;n = l, ??? ,N; 1 = 1, ??? ,L〇
[0050] 步骤2、将上一步骤得到的NXL个子数据段与各自对应匹配的数字带通滤波器{In (k) ;k=l,…,K} ;1 = 1,…,L作互相关运算,得到传感光纤8的NXL条反射率曲线。
[0051] 所述的反射率曲线为 索引符号,*表示取共辄,反射率为复数。
[0052]所述的反射率曲线上存在干涉衰落和偏振衰落。
[0053 ]步骤3、取来自标记为1的扫频探测光脉冲的反射率曲线{Ri,i(k);k=l,…,K};1 = 1,…,L的共辄丨…= 作为参考,与其他反射率曲线相乘,得到NXL条相 位归零的反射率曲线:丨c,⑷=& ,⑷欠丨:"=V 二
[0054] 步骤4、对上一步骤得到的相位归零的反射率曲线作平均运算,得到N条无干涉衰 落和偏振衰落的综合反射率曲线:=p;,,⑷汝=1,…,尤};? = I,…,W。
[0055] 步骤5、取上一步骤得到的N条综合反射率曲线的相位项,得到N条相位曲线:{ (i>n (k) =angle[rn(k) ];k=l,...,K};n=l,...,N〇
[0056] 以n=l时为例,L条反射率曲线
同一个扫频探测光脉冲的瑞利背向散射光的L个部分,这L条反射率曲线上都存在着严重的 干涉衰落和偏振衰落点,这些衰落点的反射率的模值很小,导致这些点的相位解调会出错。 但因为这L个部分的频率各不相同,所以这L条反射率曲线也各不相同,即干涉衰落和偏振 衰落导致的极弱点在这L条反射率曲线上的位置也各不相同。对这L条反射率曲线做平均运 算便能够消除这些极弱点,从而消除这些点上出现的相位解调错误。但是由于反射率是复 数,由复数加法的知识可知,复数相加的结果的模值不一定变大,有时会变小。为了使反射 率相加后的模值最大化,需要先旋转反射率,使它们的夹角归零,然后再相加。
[0057] 步骤6、对上一步骤得到的N条相位曲线时延M个单位,再将时移前后的相位曲线作 差分,得到N条差分相位曲线:{ A (J>n(k) = <K(k)-<K(k-M) ;k=l,???,K} ;n = l,…,N。
[0058]步骤7、对上一步骤得到的N条差分相位曲线求方差,得到一条相位方差曲线:
[0059]步骤8、如果上一步骤得到的相位方差曲线中k = ko处的方差大于0.02,则该点为 振动点,其位置为:
,其中为光在光纤中的传播速度,ts为数据采集卡12的采样 率;振动点的振动波形为步骤6得到的N条差分相位曲线中k = k〇处的差分相位组成的新序 列:{ A 伞 k〇(n);n = 1,…,N} 〇
[0060]本实施例的空间分辨率a Z由扫频探测光脉冲的扫频范围大小A F决定,即 ,其中:y为扫频速度。
[0061 ]如图3和图4所不,本实施例设置两个振动点,分别在传感光纤8的9.83km处发生频 率为1 kHz的单频振动、在9.93km处发生频率为4kHz的单频振动,两个振动点的振动覆盖范 围均为10m。
[0062] 本实施例N = 80, L = 4,时延单位M= 50;四个频段分别为150~170MHz、175~ 195MHz、200~220MHz和225~245MHz;则80个扫频探测光脉冲的原始数据段按时间顺序标 记为{xn(k) ;k=l,…,K} ;n=l,…,80,分成的80X4 = 320个子数据段标记为{xn,i(k) ;k = l,...,K};n = l,...,80;l = l,...,4。
[0063]本实施例得到的反射率曲线为:
[0064;
,相位归零的反射率曲线为 啊,…,…5§0;/二1,.-,4,综合反射率曲线为:
[0066] { (j>n(k)=angle[;rn(k)] ;k=l,…,K} ;n=l,…,80,差分相位曲线为:
[0067] { A 巾 n(k) = <K(k)-<i) n(k_50) ;k = l,…,K} ;n = l,…,80,相位方差曲线为:
[0069] 如图3(d)所示,k在[98200,98400]和[99200,99300]范围内的方差远大于0.02,可 判定这两段内发生振动,振动位置z在9830m和9930m,与设定的振动位置相吻合;两个振动 点的振动波形分别为{ A巾983QQ(n) ;n = 1,…,80}和{ A巾993Q()(n) ;n = 1,…,80},获取的振 动波形的信噪比达到30dB,如图4(b)和(d)所示。
[0070] 本实施例基于新的反射仪结构的分布式光纤传感系统克服了存在于传统的小-0TDR系统中空间分辨率和动态范围的矛盾,同时获得了 20dB的高动态范围和5m的高空间分 辨率,如图3(a)和(d)所示;采用"变频-移相平均"的相位解调算法,解决了传统相位解调方 法中偏振衰落和干涉衰落的问题,准确定位振动位置,同时保持高信噪比。
【主权项】
1. 一种可消衰落噪声的分布式光纤振动传感系统,其特征在于,包括:信号发生模块、 窄线宽激光光源模块、扫频切光脉冲模块、环形器、传感光纤、相干接收模块、光电转换模块 和数字信号处理模块,其中:信号发生模块向扫频切光脉冲模块输入放大的扫频射频脉冲 串信号,同时信号发生模块向数字信号处理模块发送触发信号;窄线宽激光光源模块产生 的超窄线宽激光分为两路,一路为探测光输入扫频切光脉冲模块,另一路为参考光输入相 干接收模块;扫频切光脉冲模块输出放大的扫频探测光脉冲串,经过环形器输入传感光纤; 传感光纤产生的瑞利背向散射光经环形器输入相干接收模块,与参考光在相干接收模块中 拍频,产生的拍频光信号输入光电转换模块;光电转换模块将拍频光信号转换为电信号,并 输入数字信号处理模块进行相位解调。2. 根据权利要求1所述的分布式光纤振动传感系统,其特征是,所述的信号发生模块包 括:相连的信号发生器和射频信号放大器,信号发生器输出的扫频射频脉冲串信号包括:多 个等时间间距、相同扫频范围和相同脉冲宽度的扫频射频脉冲信号。3. 根据权利要求1所述的分布式光纤振动传感系统,其特征是,所述的窄线宽激光光源 模块包括:依次相连的窄线宽光纤激光器、光纤耦合器和偏振控制器。4. 根据权利要求1所述的分布式光纤振动传感系统,其特征是,所述的扫频切光脉冲模 块包括:相连的声光调制器/单边带调制器和掺饵光纤放大器。5. 根据权利要求1所述的分布式光纤振动传感系统,其特征是,所述的数字信号处理模 块包括:相连的数据采集卡和计算机,其中:数据采集卡对输入的电信号进行采样,将原始 数据输入计算机进行相位解调。6. -种基于上述任一权利要求所述的分布式光纤传感系统的解调方法,其特征在于, 计算机通过产生多个频段不同且无重叠的数字带通滤波器,结合来自多个扫频探测光脉冲 的瑞利背向散射光的原始数据段,得到传感光纤的多条反射率曲线;采用移相平均法对反 射率曲线进行消衰落处理,得到无干涉衰落和偏振衰落的多条综合反射率曲线;对综合反 射率曲线作延迟差分处理,得到多条相位差分曲线;对相位差分曲线求方差,得到一条相位 方差曲线;最后根据相位方差曲线中的方差进行振动点的判定,得到振动点的位置和振动 波形。7. 根据权利要求6所述的解调方法,其特征是,所述的反射率曲线通过以下方法得到: 计算机产生多个频段不同且无重叠的数字带通滤波器,将来自多个扫频探测光脉冲的原始 数据段分成与数字带通滤波器相同数量的子数据段,将子数据段与匹配标记的数字带通滤 波器作互相关运算,得到传感光纤的反射率曲线集合。8. 根据权利要求6所述的解调方法,其特征是,所述的移相平均法是指:以一条反射率 曲线的共辄作为参考,与其他的反射率曲线作相乘运算,得到相位归零的反射率曲线集合, 并对相位归零的反射率曲线作平均运算,得到无干涉衰落和偏振衰落的综合反射率曲线。9. 根据权利要求6所述的解调方法,其特征是,所述的延迟差分处理是指:取各条综合 反射率曲线的相位项为相位曲线,对相位曲线进行时延,将时移前后的相位曲线作差分得 到差分相位曲线。10. 根据权利要求6所述的解调方法,其特征是,所述的振动点的判定是指:当相位方差 曲线中的某点的方差大于0.02,则该点为振动点;该振动点的位置为:,其中:c'为 光在光纤中的传播速度,ts为数据采集卡的采样率,ko为振动点;振动点的振动波形为差分 相位曲线中振动点处的差分相位组成的新序列。
【文档编号】G01H9/00GK106052842SQ201610635522
【公开日】2016年10月26日
【申请日】2016年8月5日 公开号201610635522.8, CN 106052842 A, CN 106052842A, CN 201610635522, CN-A-106052842, CN106052842 A, CN106052842A, CN201610635522, CN201610635522.8
【发明人】何祖源, 刘庆文, 陈典, 樊昕昱
【申请人】上海交通大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1