一种用于调整前馈参数的方法和系统的制作方法

文档序号:10686126阅读:434来源:国知局
一种用于调整前馈参数的方法和系统的制作方法
【专利摘要】本申请提供了一种用于调整前馈参数的方法,本方案中能够通过位置误差曲线分析得到最大的动态跟踪误差和最大的位置欠调,进而判断是否符合系统要求,当不符合要求时,能够直接针对速度前馈参数和加速度前馈参数进行调整,进而对最大动态跟踪误差和最大位置欠调进行调整,不需要将最大动态跟踪误差和最大位置欠调进行加权或者取平均值等处理后成为单一目标,再对最后的单一目标调整到最小值,最大动态跟踪误差和最大位置欠调调整时两个目标都很确定,能够精确调整到最大动态跟踪误差要求和最大位置欠调要求,解决了不能精确调整速度前馈参数和加速度前馈参数同时精确满足最大动态跟踪误差要求和最大位置欠调要求的问题。
【专利说明】
一种用于调整前馈参数的方法和系统
技术领域
[0001] 本发明涉及高加速高精度电子设备控制领域,更具体的说,涉及一种用于调整前 馈参数的方法和系统。
【背景技术】
[0002] 高加速高精度的电子设备,如固晶机、焊线机、晶圆级封装设备等,既要求动态快 速跟踪能力又要求高精度,为了提高动态快速跟踪能力,可以采用基于速度和加速度运动 规划命令作为输入进行前馈校正的方法。
[0003] 前馈校正涉及到对速度前馈参数和加速度前馈参数的调整,目前,对速度前馈参 数和加速度前馈参数的调整多采用手动调整或者简单的全局搜索式自动调整,这两种调整 方式将多个目标进行加权或者取平均值等处理,将最终处理的结果进行最大或者最小的选 择,这样一来,多个目标里面的每个目标可能取值不确定,从而不能调整速度前馈参数和加 速度前馈参数同时精确满足最大动态跟踪误差要求和最大位置欠调要求。因此,亟需一种 能够精确调整速度前馈参数和加速度前馈参数同时精确满足最大动态跟踪误差要求和最 大位置欠调要求的方法。

【发明内容】

[0004] 有鉴于此,本发明提供一种用于调整前馈参数的方法和系统,以解决不能调整速 度前馈参数和加速度前馈参数同时精确满足最大动态跟踪误差要求和最大位置欠调要求 的问题。
[0005] 为解决上述技术问题,本发明采用了如下技术方案:
[0006] -种用于调整前馈参数的方法,所述方法包括:
[0007] 根据位置误差曲线分析得到最大的动态跟踪误差和最大的位置欠调;
[0008] 判断所述最大的动态跟踪误差是否大于最大动态跟踪误差要求和所述最大的位 置欠调是否大于最大位置欠调要求;
[0009] 当所述最大的动态跟踪误差大于最大动态跟踪误差要求或所述最大的位置欠调 大于最大位置欠调要求时,对速度前馈参数和加速度前馈参数进行调整;
[0010] 判断系统输出的动态跟踪误差是否满足最大动态跟踪误差要求的误差范围和系 统输出的位置欠调是否满足最大位置欠调要求的误差范围;
[0011] 当动态跟踪误差不满足最大动态跟踪误差要求的误差范围或位置欠调不满足最 大位置欠调要求的误差范围时,返回所述对速度前馈参数和加速度前馈参数进行调整。
[0012 ]优选地,所述位置误差曲线生成过程为:
[0013] 分析速度前馈参数与位置误差的第一对应关系以及加速度前馈参数与位置误差 的第二对应关系;
[0014] 根据所述第一对应关系和所述第二对应关系进行仿真得到所述位置误差曲线。
[0015] 优选地,所述根据位置误差曲线分析得到最大的动态跟踪误差和最大的位置欠 调,具体包括:
[0016] 将所述位置误差曲线中动态跟踪误差曲线的峰值设置为最大的动态跟踪误差;
[0017] 将所述位置误差曲线中位置欠调曲线的峰值设置为最大的位置欠调。
[0018] 优选地,所述对速度前馈参数和加速度前馈参数进行调整,具体包括:
[0019] 将速度前馈参数、加速度前馈参数、动态跟踪误差和位置欠调进行模糊化操作;
[0020] 根据模糊规则对模糊化后的速度前馈参数、加速度前馈参数、动态跟踪误差和位 置欠调执行模糊推理操作,得到速度总模糊规则和加速度总模糊规则;
[0021] 对所述速度总模糊规则和所述加速度总模糊规则执行去模糊化操作,得到第一模 糊查询表和第二模糊查询表;所述第一模糊查询表包含速度前馈参数、动态跟踪误差和位 置欠调之间的对应关系,所述第二模糊查询表包含加速度前馈参数、动态跟踪误差和位置 欠调之间的对应关系;
[0022] 根据所述第一模糊查询表对速度前馈参数进行调整和根据所述第二模糊查询表 对加速度前馈参数进行调整。
[0023] 优选地,将速度前馈参数、加速度前馈参数、动态跟踪误差和位置欠调进行模糊化 操作,具体包括:
[0024] 将速度前馈参数、加速度前馈参数、动态跟踪误差和位置欠调转换为模糊控制系 统可以识别的速度前馈参数模糊量、加速度前馈参数模糊量、动态跟踪误差模糊量和位置 欠调模糊量。
[0025] 优选地,所述根据所述第一模糊查询表对速度前馈参数进行调整和根据所述第二 模糊查询表对加速度前馈参数进行调整,具体包括:
[0026] 根据所述第一模糊查询表中速度前馈参数、动态跟踪误差和位置欠调之间的对应 关系,选择速度前馈参数进行调整;
[0027] 根据所述第二模糊查询表中加速度前馈参数、动态跟踪误差和位置欠调之间的对 应关系,选择加速度前馈参数进行调整。
[0028] -种用于调整前馈参数的系统,所述系统包括:
[0029] 分析单元,用于根据位置误差曲线分析得到最大的动态跟踪误差和最大的位置欠 调;
[0030] 判断单元,用于判断所述最大的动态跟踪误差是否大于最大动态跟踪误差要求和 所述最大的位置欠调是否大于最大位置欠调要求;
[0031] 调整单元,用于当判断单元判断所述最大的动态跟踪误差大于最大动态跟踪误差 要求或所述最大的位置欠调大于最大位置欠调要求时,对速度前馈参数和加速度前馈参数 进行调整;
[0032] 误差判断单元,用于判断系统输出的动态跟踪误差是否满足最大动态跟踪误差要 求的误差范围和系统输出的位置欠调是否满足最大位置欠调要求的误差范围;
[0033] 所述调整单元,用于当误差判断单元判断动态跟踪误差不满足最大动态跟踪误差 要求的误差范围或位置欠调不满足最大位置欠调要求的误差范围时,再次对所述对速度前 馈参数和加速度前馈参数进行调整。
[0034] 优选地,所述系统还包括:
[0035]对应关系分析单元,用于分析速度前馈参数与位置误差的第一对应关系以及加速 度前馈参数与位置误差的第二对应关系;
[0036]仿真单元,用于根据所述第一对应关系和所述第二对应关系进行仿真得到所述位 置误差曲线。
[0037]优选地,所述分析单元包括:
[0038] 动态跟踪误差分析单元,用于将所述位置误差曲线中动态跟踪误差曲线的峰值设 置为最大的动态跟踪误差;
[0039] 位置欠调分析单元,用于将所述位置误差曲线中位置欠调曲线的峰值设置为最大 的位置欠调。
[0040] 优选地,所述调整单元包括:
[0041] 模糊化单元,用于将速度前馈参数、加速度前馈参数、动态跟踪误差和位置欠调进 行模糊化操作;
[0042]模糊推理单元,用于根据模糊规则对模糊化后的速度前馈参数、加速度前馈参数、 动态跟踪误差和位置欠调执行模糊推理操作,得到速度总模糊规则和加速度总模糊规则;
[0043] 去模糊化单元,用于对所述速度总模糊规则和所述加速度总模糊规则执行去模糊 化操作,得到第一模糊查询表和第二模糊查询表;所述第一模糊查询表包含速度前馈参数、 动态跟踪误差和位置欠调之间的对应关系,所述第二模糊查询表包含加速度前馈参数、动 态跟踪误差和位置欠调之间的对应关系
[0044] 参数调整单元,用于根据所述第一模糊查询表对速度前馈参数进行调整和根据所 述第二模糊查询表对加速度前馈参数进行调整。
[0045] 优选地,所述模糊化单元包括:
[0046] 模糊化子单元,用于将速度前馈参数、加速度前馈参数、动态跟踪误差和位置欠调 转换为模糊控制系统可以识别的速度前馈参数模糊量、加速度前馈参数模糊量、动态跟踪 误差模糊量和位置欠调模糊量。
[0047] 优选地,所述参数调整单元,包括:
[0048] 速度前馈参数调整单元,用于根据所述第一模糊查询表中速度前馈参数、动态跟 踪误差和位置欠调之间的对应关系,选择速度前馈参数进行调整;
[0049] 加速度前馈参数调整单元,用于根据所述第二模糊查询表中加速度前馈参数、动 态跟踪误差和位置欠调之间的对应关系,选择加速度前馈参数进行调整。
[0050] 相较于现有技术,本发明具有以下有益效果:
[0051] 本发明提供了一种用于调整前馈参数的方法,本方案中能够通过位置误差曲线分 析得到最大的动态跟踪误差和最大的位置欠调,进而判断是否符合系统要求,当不符合要 求时,能够直接针对速度前馈参数和加速度前馈参数进行调整,进而对最大动态跟踪误差 和最大位置欠调进行调整,不需要将最大动态跟踪误差和最大位置欠调进行加权或者取平 均值等处理后成为单一目标,再对最后的单一目标调整到最小值,最大动态跟踪误差和最 大位置欠调调整时两个目标都很确定,能够精确调整到最大动态跟踪误差要求和最大位置 欠调要求,解决了不能精确调整速度前馈参数和加速度前馈参数同时精确满足最大动态跟 踪误差要求和最大位置欠调要求的问题。
【附图说明】
[0052] 为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现 有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本 发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据 提供的附图获得其他的附图。
[0053] 图1为本发明实施例一提供的调整前馈参数方法的方法流程图;
[0054] 图2为本发明实施例二提供的调整前馈参数方法的方法流程图;
[0055] 图3为本发明实施例三提供的调整前馈参数方法的方法流程图;
[0056] 图4为本发明实施例四提供的调整前馈参数系统的结构示意图;
[0057] 图5为本发明实施例五提供的调整前馈参数系统的结构示意图;
[0058] 图6为本发明实施例六提供的调整前馈参数系统的结构示意图。
【具体实施方式】
[0059] 下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完 整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于 本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他 实施例,都属于本发明保护的范围。
[0060] 本发明提供了一种用于调整前馈参数的方法,参照图1,所述方法包括:
[0061 ] S101、根据位置误差曲线分析得到最大的动态跟踪误差和最大的位置欠调;
[0062] 可选的,本发明提供的另一实施例中,所述位置误差曲线生成过程为:
[0063] 分析速度前馈参数与位置误差的第一对应关系以及加速度前馈参数与位置误差 的第二对应关系;
[0064] 根据所述第一对应关系和所述第二对应关系进行仿真得到所述位置误差曲线。
[0065] 需要说明的是,位置误差=目标位置-实际位置,其中目标位置与实际位置指的是 执行机构的运动位置的理想值与实际值。仿真采用的是矩阵实验室matlab软件进行仿真。
[0066] 其中,调整速度前馈参数或者加速度前馈参数的值,对应的位置误差曲线的形状 会发生变化。具体的,当速度前馈参数增加或者递减时,位置误差曲线逐渐下移或者上移, 当加速度前馈参数递增或者递减时,位置误差曲线的左峰和右谷同时收缩或膨胀放大。当 运动命令开始或者结束后,速度前馈参数和加速度前馈参数对位置误差曲线的影响可以忽 略。
[0067] S102、判断所述最大的动态跟踪误差是否大于最大动态跟踪误差要求和所述最大 的位置欠调是否大于最大位置欠调要求;
[0068] 其中最大动态跟踪误差要求和最大位置欠调要求是根据具体需要人为设定的。
[0069] S103、对速度前馈参数和加速度前馈参数进行调整。
[0070] 需要说明的是,当所述最大的动态跟踪误差大于最大动态跟踪误差要求或所述最 大的位置欠调大于最大位置欠调要求时,才对速度前馈参数和加速度前馈参数进行调整。
[0071] S104、判断系统输出的动态跟踪误差是否满足最大动态跟踪误差要求的误差范围 和系统输出的位置欠调是否满足最大位置欠调要求的误差范围;
[0072] 需要说明的是,当动态跟踪误差不满足最大动态跟踪误差要求的误差范围或位置 欠调不满足最大位置欠调要求的误差范围时,返回所述对速度前馈参数和加速度前馈参数 进行调整。
[0073] 本实施例提供了一种用于调整前馈参数的方法,本方案中能够通过位置误差曲线 分析得到最大的动态跟踪误差和最大的位置欠调,进而判断是否符合系统要求,当不符合 要求时,能够直接针对速度前馈参数和加速度前馈参数进行调整,进而对最大动态跟踪误 差和最大位置欠调进行调整,不需要将最大动态跟踪误差和最大位置欠调进行加权或者取 平均值等处理后成为单一目标,再对最后的单一目标调整到最小值,最大动态跟踪误差和 最大位置欠调调整时两个目标都很确定,能够精确调整到最大动态跟踪误差要求和最大位 置欠调要求,解决了不能精确调整速度前馈参数和加速度前馈参数同时精确满足最大动态 跟踪误差要求和最大位置欠调要求的问题。
[0074] 可选的,本发明的另一实施例提供了一种用于调整前馈参数的方法,参照图2,其 中,所述根据位置误差曲线分析得到最大的动态跟踪误差和最大的位置欠调,具体包括: [0075] S201、将所述位置误差曲线中动态跟踪误差曲线的峰值设置为最大的动态跟踪误 差;
[0076] S202、将所述位置误差曲线中位置欠调曲线的峰值设置为最大的位置欠调。
[0077]需要说明的是,位置误差曲线图中共包括两类曲线,一类是动态跟踪误差曲线,一 类是位置欠调曲线。由于要得到最大的动态跟踪误差和最大的位置欠调,只需根据位置误 差曲线图得到两类曲线的峰值即可,即为最大的动态跟踪误差和最大的位置欠调。
[0078] 本实施例中,通过将动态跟踪误差曲线的峰值设置为最大的动态跟踪误差、位置 欠调曲线的峰值设置为最大的位置欠调,能够得到最大的动态跟踪误差和最大的位置欠 调。
[0079] 需要说明的是,本实施例中的其他步骤与上述实施例中的步骤一致,请参照上述 实施例,在此不再赘述。
[0080] 可选的,本发明的另一实施例提供了一种用于调整前馈参数的方法,参照图3,其 中,所述对速度前馈参数和加速度前馈参数进行调整,具体包括:
[0081] S303、将速度前馈参数、加速度前馈参数、动态跟踪误差和位置欠调进行模糊化操 作;
[0082] 可选的,本发明的另一实施例中,将速度前馈参数、加速度前馈参数、动态跟踪误 差和位置欠调进行模糊化操作,具体包括:
[0083] 将速度前馈参数、加速度前馈参数、动态跟踪误差和位置欠调转换为模糊控制系 统可以识别的速度前馈参数模糊量、加速度前馈参数模糊量、动态跟踪误差模糊量和位置 欠调模糊量。
[0084] 模糊化的主要作用是选定模糊控制器的输入量,并将其转换为系统可以识别的模 糊量。具体包括以下三步:第一:对输入量进行满足模糊控制需求的处理;第二:对输入量进 行尺度变换;第三:确定各输入量的模糊语言取值和相应的隶属度函数。
[0085] 在本发明中,四个模糊变量速度前馈参数、加速度前馈参数、动态跟踪误差和位置 欠调的论域均为{-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6},模糊术语为咄、匪、吧、20、?3、卩]?和 PB,其中,NB代表负大,匪代表负中,NS代表负小,Z0代表零,PS代表正小,PM代表正中,PB代 表正大。模糊术语均采用梯形隶属度函数表示。
[0086] S304、根据模糊规则对模糊化后的速度前馈参数、加速度前馈参数、动态跟踪误差 和位置欠调执行模糊推理操作,得到速度总模糊规则和加速度总模糊规则;
[0087]其中,模糊规则是指规则库。根据人类专家的经验建立模糊规则库。模糊规则包含 众多控制规则,是从实际经验过渡到模糊控制器的关键步骤。模糊推理主要实现基于知识 的推理决策。
[0088]模糊规则请参照下表:
[0091]为了帮助本领域的技术人员更加清楚的了解本表,现进行举例说明。当位置欠调 取值为NB、动态跟踪误差取值为NB时,速度前馈参数取值为1^,加速度前馈参数取值为Z0。 当位置欠调取值为匪、动态跟踪误差取值为NB时,速度前馈参数取值为PB,加速度前馈参数 取值为Z0。由于位置欠调可以有NB、匪、吧、20、?3、?11和1^七种取值,同样,动态跟踪误差也 有呢、匪、吧、20、?5、卩11和?8七种取值,所以速度前馈参数会有49种取值,加速度前馈参数也 会有49种取值,在表格中已经形象的表示出各种取值情况,就不在用文字依次表述。
[0092]对应模糊规则的公式为:
[0093] RKvell= (NBdPE XPBKvel)°(NBpUS XPBKvel) =RDPE2Kvell H RpUS2Kvell ( 1 )
[0094] RKaccl = ( NBdPE x Z〇Kacc ) 0 ( NBpUS x Z〇Kacc ) = RDPE2Kaccl 门 RpUS2Kaccl (2)
[0095] ???
[0096] RKvel49 = ( PBdPE x NEkvel) 0 ( PBpuS x NEkvel ) = RDPE2Kvel49 门 RpUS2Kvel49 (3)
[0097] Rl(acc49 = (PBdPE x Z〇Kacc) 0 (PBpuS x Z〇Kacc) = RDPE2Kacc49 n RpuS2Kacc49 (4)
[0098] 其中,公式(1)、(2)表示的模糊规则为If DPE is NB and PUS is NB,then Kvel 土8?8&11(11^(^18 20;公式(3)、(4)表示的模糊规则为1€0?£18?8 311(1?1]5 18?8, then Kvel is NB and Kacc is Z0〇
[0099] 其中Kvel代表速度前馈参数,Kacc代表加速度前馈参数,DPE代表动态跟踪误差, PUS代表位置欠调,RKven、RKvel49代表RKvell、RKvel49的模糊规则,NBdpe代表DPE的取值为NB, PBKvei代表Kvel取值为ro,NBPUS代表PUS的取值为NB,RDPE2K Veii代表DPE与Kvell的模糊规则, 门代表关系与,RpUS2Kvell代表PUS与Kvell的模糊规则,。代表表不关系的合成运算。RKaccl、 RKvel49代表RKaccl、RKvel49的模糊规则,Z〇Kacc代表KaCC 的取值为Z0,RDPE2Kaccl代表DPE与KaCCl 的 模糊规则,RPUS2KM1代表PUS与Kaccl的模糊规则。PBdpe代表DPE的取值为ro,NBKvei代表Kvel 的取值为NB,PBpus代表PUS的取值为TO,R DPE2Kvei49代表DPE与Kve 149的模糊规则,RpUS2Kvei49代 表PUS与Kvel49的模糊规则。RDPE2Kacc49代表DPE与Kacc49的模糊规则,RpUS2Kacc49代表PUS与 Kacc49的模糊规则。
[0100] 需要说明的是,只是列出了其中四条公式,中间省略了 94条公式,这些公式与上表 是一一对应关系,在此就不在一一列出具体的公式。
[0101] 由以上公式,可以得到
[0102]
[0103] 其中,裔4、fve/49代表Kvel第1条和第49条模糊条件语句的模糊规则,:^瓦代 表动态跟踪误差模糊量,冗及,.代表位置欠调模糊量,ice49代表Ka cc第1条和第49 条模糊条件语句的模糊规则。
[0104] 根据上述公式(5)至(8)可以得到
[0108]代表Kvel的整个控制系统模糊控制规则的总模糊规则,代表Kvel第k条模糊 条件语句的模糊规则,其中,k的取值为1-49中的任一值
代表对fv成取并集,
表1。。的整个控制系统模糊控制规则的总模糊规则,facq代表Kacc第k条模糊条件语句的 模糊规则,其中,k的取值为1-49中的任一值。
[0109] S305、对所述速度总模糊规则和所述加速度总模糊规则执行去模糊化操作,得到 第一模糊查询表和第二模糊查询表;
[0110] 其中,米用重心法去模糊化,去模糊化后,得到
[0113]
代表Kve 1的精确值,y(k)代表输出量模糊集fve/A或中的 各元素
代表取和,
代表Kacc的精确值。
[0114] 根据Kvel的精确值和Kacc的精确值公式可以得到第一模糊查询表和第二模糊查 询表,其中所述第一模糊查询表包含速度前馈参数、动态跟踪误差和位置欠调之间的对应 关系,所述第二模糊查询表包含加速度前馈参数、动态跟踪误差和位置欠调之间的对应关 系。
[0115] 模糊查询表指对论域动态跟踪误差、位置欠调中全部元素所有组合计算出相应的 以论域速度前馈参数或加速度前馈参数元素表示的控制量变化值,并写成矩阵的形式,由 该矩阵构成相应表格。
[0116] 其中第一模糊查询表为

[0122] S306、根据所述第一模糊查询表对速度前馈参数进行调整和根据所述第二模糊查 询表对加速度前馈参数进行调整。
[0123] 可选的,本发明的另一实施例中,所述根据所述第一模糊查询表对速度前馈参数 进行调整和根据所述第二模糊查询表对加速度前馈参数进行调整,具体包括:
[0124] 根据所述第一模糊查询表中速度前馈参数、动态跟踪误差和位置欠调之间的对应 关系,选择速度前馈参数进行调整;
[0125] 根据所述第二模糊查询表中加速度前馈参数、动态跟踪误差和位置欠调之间的对 应关系,选择加速度前馈参数进行调整。
[0126] 本实施例中,通过模糊化、模糊推理、去模糊化最终得到第一模糊查询表和第二模 糊查询表,进而对速度前馈参数和加速度前馈参数进行调整,使其满足系统要求。
[0127] 需要说明的是,本实施例中的其他步骤与上述实施例中的步骤一致,请参照上述 实施例,在此不再赘述。
[0128] 本发明的另一实施例提供了一种用于调整前馈参数的系统。参照图4,所述系统包 括:
[0129] 分析单元101,用于根据位置误差曲线分析得到最大的动态跟踪误差和最大的位 置欠调;
[0130] 判断单元102,用于判断所述最大的动态跟踪误差是否大于最大动态跟踪误差要 求和所述最大的位置欠调是否大于最大位置欠调要求;
[0131] 调整单元103,用于当判断单元102判断所述最大的动态跟踪误差大于最大动态跟 踪误差要求或所述最大的位置欠调大于最大位置欠调要求时,对速度前馈参数和加速度前 馈参数进行调整;
[0132] 误差判断单元104,用于判断系统输出的动态跟踪误差是否满足最大动态跟踪误 差要求的误差范围和系统输出的位置欠调是否满足最大位置欠调要求的误差范围;
[0133] 所述调整单元103,用于当误差判断单元104判断动态跟踪误差不满足最大动态跟 踪误差要求的误差范围或位置欠调不满足最大位置欠调要求的误差范围时,再次对所述对 速度前馈参数和加速度前馈参数进行调整。
[0134] 可选的,本发明的另一实施例中,所述系统还包括:
[0135] 对应关系分析单元105,用于分析速度前馈参数与位置误差的第一对应关系以及 加速度前馈参数与位置误差的第二对应关系;
[0136] 仿真单元106,用于根据所述第一对应关系和所述第二对应关系进行仿真得到所 述位置误差曲线。
[0137] 具体的,对应关系分析单元105分析速度前馈参数与位置误差的第一对应关系以 及加速度前馈参数与位置误差的第二对应关系后,仿真单元106根据所述第一对应关系和 所述第二对应关系进行仿真得到所述位置误差曲线。
[0138] 本实施例提供了一种用于调整前馈参数的方法,本方案中分析单元101能够通过 位置误差曲线分析得到最大的动态跟踪误差和最大的位置欠调,进而判断是否符合系统要 求,当不符合要求时,能够直接针对速度前馈参数和加速度前馈参数进行调整,进而对最大 动态跟踪误差和最大位置欠调进行调整,不需要将最大动态跟踪误差和最大位置欠调进行 加权或者取平均值等处理后成为单一目标,再对最后的单一目标调整到最小值,最大动态 跟踪误差和最大位置欠调调整时两个目标都很确定,能够精确调整到最大动态跟踪误差要 求和最大位置欠调要求,解决了不能精确调整速度前馈参数和加速度前馈参数同时精确满 足最大动态跟踪误差要求和最大位置欠调要求的问题。
[0139] 需要说明的是,本实施例中提供的各个单元的工作过程请参照图1对应的实施例, 在此不再赘述。
[0140] 可选的,本发明的另一实施例中,参照图5,所述分析单元101包括:
[0141] 动态跟踪误差分析单元1011,用于将所述位置误差曲线中动态跟踪误差曲线的峰 值设置为最大的动态跟踪误差;
[0142] 位置欠调分析单元1012,用于将所述位置误差曲线中位置欠调曲线的峰值设置为 最大的位置欠调。
[0143] 本实施例中,动态跟踪误差分析单元1011将动态跟踪误差曲线的峰值设置为最大 的动态跟踪误差、位置欠调分析单元1012将位置欠调曲线的峰值设置为最大的位置欠调, 能够得到最大的动态跟踪误差和最大的位置欠调。
[0144] 需要说明的是,本实施例中提供的各个单元的工作过程请参照图2对应的实施例, 在此不再赘述。
[0145] 可选的,本发明的另一实施例中,参照图6,所述调整单元103包括:
[0146] 模糊化单元1031,用于将速度前馈参数、加速度前馈参数、动态跟踪误差和位置欠 调进行模糊化操作;
[0147] 模糊推理单元1032,用于根据模糊规则对模糊化后的速度前馈参数、加速度前馈 参数、动态跟踪误差和位置欠调执行模糊推理操作,得到速度总模糊规则和加速度总模糊 规则;
[0148] 去模糊化单元1033,用于对所述速度总模糊规则和所述加速度总模糊规则执行去 模糊化操作,得到第一模糊查询表和第二模糊查询表;所述第一模糊查询表包含速度前馈 参数、动态跟踪误差和位置欠调之间的对应关系,所述第二模糊查询表包含加速度前馈参 数、动态跟踪误差和位置欠调之间的对应关系
[0149] 参数调整单元1034,用于根据所述第一模糊查询表对速度前馈参数进行调整和根 据所述第二模糊查询表对加速度前馈参数进行调整。
[0150] 可选的,本发明的另一实施例中,所述模糊化单元1031包括:
[0151] 模糊化子单元10311,用于将速度前馈参数、加速度前馈参数、动态跟踪误差和位 置欠调转换为模糊控制系统可以识别的速度前馈参数模糊量、加速度前馈参数模糊量、动 态跟踪误差模糊量和位置欠调模糊量。
[0152] 可选的,本发明的另一实施例中,所述参数调整单元1034,包括:
[0153] 速度前馈参数调整单元10341,用于根据所述第一模糊查询表中速度前馈参数、动 态跟踪误差和位置欠调之间的对应关系,选择速度前馈参数进行调整;
[0154] 加速度前馈参数调整单元10342,用于根据所述第二模糊查询表中加速度前馈参 数、动态跟踪误差和位置欠调之间的对应关系,选择加速度前馈参数进行调整。
[0155]本实施例中,通过模糊化单元1031、模糊推理单元1032、去模糊化单元1033分别执 行模糊化、模糊推理、去模糊化最终得到第一模糊查询表和第二模糊查询表,进而参数调整 单元1034对速度前馈参数和加速度前馈参数进行调整,使其满足系统要求。
[0156]需要说明的是,本实施例中提供的各个单元的工作过程请参照图3对应的实施例, 在此不再赘述。
[0157]对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。 对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的 一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明 将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一 致的最宽的范围。
【主权项】
1. 一种用于调整前馈参数的方法,其特征在于,所述方法包括: 根据位置误差曲线分析得到最大的动态跟踪误差和最大的位置欠调; 判断所述最大的动态跟踪误差是否大于最大动态跟踪误差要求和所述最大的位置欠 调是否大于最大位置欠调要求; 当所述最大的动态跟踪误差大于最大动态跟踪误差要求或所述最大的位置欠调大于 最大位置欠调要求时,对速度前馈参数和加速度前馈参数进行调整; 判断系统输出的动态跟踪误差是否满足最大动态跟踪误差要求的误差范围和系统输 出的位置欠调是否满足最大位置欠调要求的误差范围; 当动态跟踪误差不满足最大动态跟踪误差要求的误差范围或位置欠调不满足最大位 置欠调要求的误差范围时,返回所述对速度前馈参数和加速度前馈参数进行调整。2. 根据权利要求1所述的方法,其特征在于,所述位置误差曲线生成过程为: 分析速度前馈参数与位置误差的第一对应关系以及加速度前馈参数与位置误差的第 二对应关系; 根据所述第一对应关系和所述第二对应关系进行仿真得到所述位置误差曲线。3. 根据权利要求1所述的方法,其特征在于,所述根据位置误差曲线分析得到最大的动 态跟踪误差和最大的位置欠调,具体包括: 将所述位置误差曲线中动态跟踪误差曲线的峰值设置为最大的动态跟踪误差; 将所述位置误差曲线中位置欠调曲线的峰值设置为最大的位置欠调。4. 根据权利要求1所述的方法,其特征在于,所述对速度前馈参数和加速度前馈参数进 行调整,具体包括: 将速度前馈参数、加速度前馈参数、动态跟踪误差和位置欠调进行模糊化操作; 根据模糊规则对模糊化后的速度前馈参数、加速度前馈参数、动态跟踪误差和位置欠 调执行模糊推理操作,得到速度总模糊规则和加速度总模糊规则; 对所述速度总模糊规则和所述加速度总模糊规则执行去模糊化操作,得到第一模糊查 询表和第二模糊查询表;所述第一模糊查询表包含速度前馈参数、动态跟踪误差和位置欠 调之间的对应关系,所述第二模糊查询表包含加速度前馈参数、动态跟踪误差和位置欠调 之间的对应关系; 根据所述第一模糊查询表对速度前馈参数进行调整和根据所述第二模糊查询表对加 速度前馈参数进行调整。5. 根据权利要求4所述的方法,其特征在于,将速度前馈参数、加速度前馈参数、动态跟 踪误差和位置欠调进行模糊化操作,具体包括: 将速度前馈参数、加速度前馈参数、动态跟踪误差和位置欠调转换为模糊控制系统可 以识别的速度前馈参数模糊量、加速度前馈参数模糊量、动态跟踪误差模糊量和位置欠调 模糊量。6. 根据权利要4所述的方法,其特征在于,所述根据所述第一模糊查询表对速度前馈参 数进行调整和根据所述第二模糊查询表对加速度前馈参数进行调整,具体包括: 根据所述第一模糊查询表中速度前馈参数、动态跟踪误差和位置欠调之间的对应关 系,选择速度前馈参数进行调整; 根据所述第二模糊查询表中加速度前馈参数、动态跟踪误差和位置欠调之间的对应关 系,选择加速度前馈参数进行调整。7. -种用于调整前馈参数的系统,其特征在于,所述系统包括: 分析单元,用于根据位置误差曲线分析得到最大的动态跟踪误差和最大的位置欠调; 判断单元,用于判断所述最大的动态跟踪误差是否大于最大动态跟踪误差要求和所述 最大的位置欠调是否大于最大位置欠调要求; 调整单元,用于当判断单元判断所述最大的动态跟踪误差大于最大动态跟踪误差要求 或所述最大的位置欠调大于最大位置欠调要求时,对速度前馈参数和加速度前馈参数进行 调整; 误差判断单元,用于判断系统输出的动态跟踪误差是否满足最大动态跟踪误差要求的 误差范围和系统输出的位置欠调是否满足最大位置欠调要求的误差范围; 所述调整单元,用于当误差判断单元判断动态跟踪误差不满足最大动态跟踪误差要求 的误差范围或位置欠调不满足最大位置欠调要求的误差范围时,再次对所述对速度前馈参 数和加速度前馈参数进行调整。8. 根据权利要求7所述的系统,其特征在于,所述系统还包括: 对应关系分析单元,用于分析速度前馈参数与位置误差的第一对应关系以及加速度前 馈参数与位置误差的第二对应关系; 仿真单元,用于根据所述第一对应关系和所述第二对应关系进行仿真得到所述位置误 差曲线。9. 根据权利要求7所述的系统,其特征在于,所述分析单元包括: 动态跟踪误差分析单元,用于将所述位置误差曲线中动态跟踪误差曲线的峰值设置为 最大的动态跟踪误差; 位置欠调分析单元,用于将所述位置误差曲线中位置欠调曲线的峰值设置为最大的位 置欠调。10. 根据权利要求7所述的系统,其特征在于,所述调整单元包括: 模糊化单元,用于将速度前馈参数、加速度前馈参数、动态跟踪误差和位置欠调进行模 糊化操作; 模糊推理单元,用于根据模糊规则对模糊化后的速度前馈参数、加速度前馈参数、动态 跟踪误差和位置欠调执行模糊推理操作,得到速度总模糊规则和加速度总模糊规则; 去模糊化单元,用于对所述速度总模糊规则和所述加速度总模糊规则执行去模糊化操 作,得到第一模糊查询表和第二模糊查询表;所述第一模糊查询表包含速度前馈参数、动态 跟踪误差和位置欠调之间的对应关系,所述第二模糊查询表包含加速度前馈参数、动态跟 踪误差和位置欠调之间的对应关系 参数调整单元,用于根据所述第一模糊查询表对速度前馈参数进行调整和根据所述第 二模糊查询表对加速度前馈参数进行调整。11. 根据权利要求10所述的系统,其特征在于,所述模糊化单元包括: 模糊化子单元,用于将速度前馈参数、加速度前馈参数、动态跟踪误差和位置欠调转换 为模糊控制系统可以识别的速度前馈参数模糊量、加速度前馈参数模糊量、动态跟踪误差 模糊量和位置欠调模糊量。12. 根据权利要求10所述的系统,其特征在于,所述参数调整单元,包括: 速度前馈参数调整单元,用于根据所述第一模糊查询表中速度前馈参数、动态跟踪误 差和位置欠调之间的对应关系,选择速度前馈参数进行调整; 加速度前馈参数调整单元,用于根据所述第二模糊查询表中加速度前馈参数、动态跟 踪误差和位置欠调之间的对应关系,选择加速度前馈参数进行调整。
【文档编号】G05B13/02GK106054595SQ201610411234
【公开日】2016年10月26日
【申请日】2016年6月12日
【发明人】贺云波, 陈新, 胡永珊, 高健, 杨志军, 陈云, 张昱, 汤晖, 敖银辉
【申请人】广东工业大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1