一种基于数值计算的激光冲击强化表面粗糙度的计算方法与流程

文档序号:11177456阅读:880来源:国知局
一种基于数值计算的激光冲击强化表面粗糙度的计算方法与流程

本发明涉及到激光冲击强化领域中表面粗糙度计算的方法,具体是一种基于数值计算的激光冲击强化表面粗糙度的计算方法。



背景技术:

激光冲击强化技术是一种先进的金属表面改性技术,其基本原理是利用高功率密度、短脉冲激光在金属表面诱导高压冲击波并作用于金属表面,在表层金属材料内引入具有一定深度的残余压应力,从而大幅度提高材料表面的抗疲劳、耐磨损和耐腐蚀等性能。大量研究证明激光冲击强化技术能够降低裂纹扩展速度,延长裂纹萌生时间。

零件表面粗糙度是评定表面质量的重要指标,表面粗糙度的大小将直接影响零件的疲劳强度、耐磨性、抗腐蚀性,金属材料在激光冲击波作用下发生局部塑性变形,从而在板料表面形成一定深度的微凹坑,引起表面粗糙度的增大,对其抗疲劳性能产生一定负面影响。因此对激光冲击强化表面粗糙度的研究具有一定的实际意义,现有研究主要集中在实验方面,即采用实验的方法对不同的激光工艺参数对零件表面进行冲击强化,然后采用测量仪器对激光冲击处理后的零件表面进行粗糙度测量,从而在大量实验的基础上获得最优的工艺参数,但是冲击强化过程机理复杂同时受到诸多可变因素的影响,这给激光冲击强化工艺参数的优化实验实施带来很大困难。同时考虑到单单依靠实验数据和操作经验采用多次尝试的方法,需要耗费一定的时间和费用。因此迫切需要一种新的计算方法来确定激光冲击强化零件表面粗糙度的数值。



技术实现要素:

本发明针对现有确定激光冲击强化零件表面粗糙度数值的局限性,特别是对于多光斑的激光冲击强化实验需要耗时耗资方面,本发明提出一种基于数值计算的激光冲击强化表面粗糙度的计算方法,从而大量降低实验成本,分析激光冲击强化参数对表面粗糙度的影响,从而在较少的时间内得到最佳的工艺参数。

其采用以下技术方案予以实现:

(1)在有限元软件abaqus中,对多光斑激光冲击强化的过程进行数值模拟,在此过程中需要设置材料性能,确定显式分析步的时间,同时采用fortan编辑子程序对载荷的施加过程进行编辑,最后提交分析作业及后处理得到零件表面的位移分布;

(2)在matlab中对数值模拟得到的零件表面位移数据进行采集和处理,同时利用最小二乘法来确定表面形貌轮廓中线位置;

(3)将数值模拟得到的表面数据带入提出的表面粗糙度离散化公式,得到表面粗糙度数值,对取至不同采样路径节点数据得出的表面粗糙度数值进行平均化处理。

本发明提出的一种基于数值计算的激光冲击强化表面粗糙度的计算方法。本方法的激光冲击强化过程数值模拟只需进行显式分析,对于多光斑的激光冲击强化载荷施加过程,采用fortran语言编辑的子程序实现不同位置不同时刻的加载,提高了效率,同时采用matlab对不同采样路径上的数据进行采集和处理,进一步提高了确定轮廓中线的效率和准确性,最后将由不同的工艺参数(激光功率密度、光斑半径、冲击强化路线、强化次数、搭接率、脉宽)得到的表面节点数据带入所提出的表面粗糙度离散化公式,确定表面粗糙度数值,因此该方法具有快速化、低成本、简便易行、计算准确的特点,工程应用前景好。

附图说明

图1为一种基于数值计算的激光冲击强化表面粗糙度的计算方法的流程图。

图2为模拟数据表面采样路径分布图。

具体实施方式

下面结合具体实例求表面粗糙度ra,同时按照本方法思路也可以求得rz和ry,本发明的技术方案作以下详细描述:

1.首先是针对多光斑的激光冲击强化过程进行数值模拟,此过程只需采用explicit求解器。

多光斑激光冲击强化过程数值模拟包括以下步骤:

1.1.建立几何模型及定义材料属性:几何尺寸为40mm*40mm*5mm,材料密度为2750kg/m3,泊松比0.33,弹性模量为72gpa。采用johnson-cook模型来描述2050-t8铝合金的动态本构关系,公式1为该模型的表达式。

式中:a为屈服强度,b和n反映了材料的应变硬化特征,c反映了应变率对材料性能的影响,εp代表等效塑性应变,代表参考应变速率,代表动态应变率,本文中上述参数取值为a=510mpa,b=200mpa,n=0.45,c=0.02,

1.2.设置显式分析步:分析步的时间应确保在每个分析步中动能最后趋近于0,本分析实例中时间设置为8×10-3s;

1.3.施加载荷和划分网格:激光功率密度为3.5gw/cm2,采用方形光班,光斑大小为4mm,脉冲宽度设置为10ns,搭接率为50%,使用fortran编辑子程序进行多光斑不同位置和不同时刻载荷的施加;在激光冲击强化区域进行网格细化,网格大小为150μmx150μmx50μm;

1.4.提交分析作业及后处理:完成有限元计算,得到激光冲击强化的数值模拟结果,包括应力、应变、位移等。

2.利用matlab对数值模拟数据进行采集和处理,利用最小二乘法来确定表面形貌轮廓中线位置,即确定公式2。

z=a·x+b(2)

3.将数值模拟得到的表面数据带入提出的表面粗糙度离散化公式,得到表面粗糙度数值,对取至不同采样路径节点数据得出的表面粗糙度数值进行平均化处理,得到表面粗糙度ra为0.355μm,表面粗糙度离散化公式为方程式3。



技术特征:

技术总结
本发明公开了一种基于数值计算的激光冲击强化表面粗糙度的计算方法,采用有限元软件ABAQUS首先对多光斑的激光冲击强化过程进行数值模拟,获得强化后零件表面不同采样路径节点的位移分布,然后利用Matlab对数值模拟得到的表面数据进行采集及处理,确定表面形貌轮廓中线的位置,最后将数值模拟得到的表面数据带入所提出的表面粗糙度离散化计算公式,得到表面粗糙度的数值。本发明考虑到激光冲击强化过程机理的复杂以及诸多可变因素的影响,单纯依靠实验获得零件表面粗糙度的方法,需要耗费大量的时间和资金,从而提出了一种基于数值计算的激光冲击强化表面粗糙度的计算方法来获得零件表面粗糙度,从而可以进一步优化激光冲击强化参数。

技术研发人员:张永康;朱然;杨青天;黄志刚
受保护的技术使用者:广东工业大学
技术研发日:2017.04.06
技术公布日:2017.10.03
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1