一种基于极限学习机的轴承故障诊断方法与流程

文档序号:12864050阅读:439来源:国知局
一种基于极限学习机的轴承故障诊断方法与流程
本发明涉及机械故障诊断
技术领域
,尤其涉及一种基于极限学习机的轴承故障诊断方法。
背景技术
:滚动轴承具有一个突出的特点,其寿命离散程度非常大。若仅呆板地按照设计寿命对轴承进行定期维修,是很不科学的。轴承使用中,要随时进行工况的监测和故障的判别。这样不仅可以防止设备工作精度下降,减少事故发生的机率,还可以最大限度地发挥轴承的工作潜力,节省开支。轻微损伤的轴承可以从使用情况,特别是轴承工作表面的磨损状况、磨损轨迹等征兆来推断出其失效的真正原因。损伤严重的轴承是因突发事故而完全报废的轴承,最终的破损状况往往早已掩盖了初始损伤的痕迹,暴露出来的只是轴承最终咬死和烧毁的现象,以及已破损的轴承零件的残骸。这些原因使得人们容易混淆轴承损伤的最主要根源,只能从轴承的工作条件、润滑状况、支承的整体结构以及损伤的形式做出推断,并借助其他科学的分析方法来验证。因此准确及时了解机械装备中的重要轴承的运行状况,对于保障机械装备的正常运转有着十分重要的意义。通过传感器对轴承作振动监测,获取轴承故障的大量信息,基于轴承故障的机理,分析其故障特征,从而对轴承故障作出科学的判断,而现有滚动轴承故障诊断方法需建立诊断模型,且不能及时准确的进行故障判断。技术实现要素:本发明的目的在于提供了一种能够准确实现信号有效分离,故障识别速度快,准确率高,无需建立模型,诊断快捷方便的基于极限学习机的轴承故障诊断方法,以解决上述
背景技术
所述的建立诊断模型,诊断不及时且准确率不高的问题。为了实现上述目的,本发明采取了如下技术方案:一种基于极限学习机的轴承故障诊断方法,包括通过振动加速度传感器获取四种工况下的振动加速度信号,所述四种工况为正常运转、内环故障运转、滚动故障运转、外环故障运转,所述方法包括以下步骤:步骤s110:对所述振动加速度信号通过变分模态分解vmd算法进行分解,得到k个imf模态分量;步骤s120:通过奇异值分解svd算法得到各个所述imf模态分量的奇异值;步骤s130:将所述imf模态分量的奇异值分为训练样本和测试样本两部分;步骤s140:将训练样本的奇异值作为极限学习机elm神经网络模型的输入值,进行深度学习训练,确定elm神经网络模型的输入连接权值、偏置值及最优输出连接权值;步骤s150:将测试样本的奇异值作为确定了输入连接权值、偏置值及最优输出连接权值的elm神经网络模型的输入值,进行学习训练,网络训练的输出结果即为轴承故障诊断结果。进一步的,所述步骤s110中通过vmd算法得到k个imf模态分量包括:步骤s111:对每个imf模态分量函数μk(t)进行希尔伯特变换,得imf模态分量的解析信号,表达式为其中,σt表示单位脉冲函数,j=(1,2,.....k);步骤s112:对每个imf模态分量的解析信号预估中心频率进行混合,并将每个imf模态分量的频谱调制到相应的基频带,步骤s113:计算每个确定了基频带的imf模态分量的解析信号的梯度的平方l2范数,得到对应的imf模态分量表达式为其中,表示偏导数,μk={μ1,μ2,.....μk}表示分解得到的k个imf模态分量,ωk表示imf模态分量的中心频率,f表示所有imf模态分量的求和;步骤s114:引入二次惩罚因子α和lagrang乘法算子λ,获得扩展的lagrange算法,表达式为,步骤s115:利用交替方向乘子算法admm求取扩展的lagrange表达式的鞍点,得k个imf模态分量。进一步的,所述步骤s115中求取扩展的lagrange表达式的鞍点包括,步骤一:初始化μk1,ωk1,λ1;步骤二:执行循环:n=n+1;步骤三:更新μk:更新ωk:步骤四:更新λ:步骤五:重复步骤一至步骤四,直到满足迭代停止条件结束迭代,得扩展的lagrange表达式的鞍点。进一步的,所述步骤s120中通过svd算法得到imf模态分量的奇异值包括:将k个imf模态分量构建信号数据m×n阶矩阵h其中,u∈rm×m和v∈rn×n均是正交矩阵,ar=diag(σ1,σ2,…,σr),σi(i=1,2,…,r)表示h的奇异值,且σ1≥…≥σr≥0,r表示h的秩,μi、νi分别为方阵hht和hth的第i个特征向量。进一步的,所述步骤s140中确定elm神经网络模型的输入连接权值、偏置值及最优输出连接权值包括:计算elm神经网络隐藏层输出矩阵f,所述elm神经网络模型的输出表达式可简写为fβ=y,其中,β表示隐藏层神经元的输出连接权值,l表示elm神经网络隐藏层神经元个数,n表示训练样本个数,y是期望输出值;确定β的最小二乘解,输出公式为:其中,f+表示隐藏层输出矩阵f的moore-penrose广义逆,最小二乘解即为最优输出连接权值βi;elm神经网络模型的输出表达式为其中,xi(i=1,2,…,n)表示训练样本的奇异值组成的输入向量,yi(i=1,2,…,n)表示训练样本网络输出向量,αi是连接第i个隐藏层神经元的输入连接权值,bi是第i个隐藏层神经元的偏置值,g表示激活函数。本发明有益效果:在vmd分解过程中通过循环迭代求取约束变分问题的最优解来确定分解得到的固有模态分量的频率中心及带宽,实现信号各频率成分的有效分离,且分解信号具有收敛快、鲁棒性高;采用svd分解的方法对vmd分解得到的信号进一步进行故障特征提取,从而达到提取信号本质特征和降维的目的,提高了故障识别的速度和识别准确率,无需建立模型,即可实现故障的检测和识别,降低了专业要求,增加了工程应用性。本发明附加的方面和优点将在下面的描述中部分给出,这些将从下面的描述中变得明显,或通过本发明的实践了解到。附图说明为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。图1为本发明实施例所述的滚动轴承故障诊断方法流程图。图2为本发明实施例所述的elm神经网络结构模型图。图3为本发明实施例所述的在正常运转状态下vmd分解得到的振动信号频谱图。图4为本发明实施例所述的在内环故障运转状态下vmd分解得到的振动信号频谱图。图5为本发明实施例所述的在滚动故障运转状态下vmd分解得到的振动信号频谱图。图6为本发明实施例所述的在外环故障运转状态下vmd分解得到的振动信号频谱图。图7为本发明实施例所述的故障诊断结果对比图。具体实施方式下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。本
技术领域
技术人员可以理解,除非特意声明,这里使用的单数形式“一”、“一个”、“所述”和“该”也可包括复数形式。应该进一步理解的是,本发明的说明书中使用的措辞“包括”是指存在所述特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组。应该理解,当我们称元件被“连接”或“耦接”到另一元件时,它可以直接连接或耦接到其他元件,或者也可以存在中间元件。此外,这里使用的“连接”或“耦接”可以包括无线连接或耦接。这里使用的措辞“和/或”包括一个或更多个相关联的列出项的任一单元和全部组合。本
技术领域
技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语)具有与本发明所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样定义,不会用理想化或过于正式的含义来解释。为便于对本发明实施例的理解,下面将结合附图以几个具体实施例为例做进一步的解释说明,且各个实施例并不构成对本发明实施例的限定。图1为本发明实施例所述的滚动轴承故障诊断方法流程图;图2为本发明实施例所述的elm神经网络结构模型图;图3为本发明实施例所述的在正常运转状态下vmd分解得到的振动信号图;图4为本发明实施例所述的在内环故障运转状态下vmd分解得到的振动信号图;图5为本发明实施例所述的在滚动故障运转状态下vmd分解得到的振动信号图;图6为本发明实施例所述的在外环故障运转状态下vmd分解得到的振动信号图;图7为本发明实施例所述的故障诊断结果对比图。本领域普通技术人员可以理解:附图只是一个实施例的示意图,附图中的模块或流程并不一定是实施本发明所必须的。如图1所示,本发明实施例所述的一种基于极限学习机的轴承故障诊断方法,包括通过振动加速度传感器获取四种工况下的振动加速度信号,所述四种工况为正常运转、内环故障运转、滚动故障运转、外环故障运转,所述方法包括以下步骤:步骤s110:对所述振动加速度信号通过变分模态分解vmd算法进行分解,得到k个imf模态分量;步骤s120:通过奇异值分解svd算法得到各个所述imf模态分量的奇异值;步骤s130:将所述imf模态分量的奇异值分为训练样本和测试样本两部分;步骤s140:将训练样本的奇异值作为极限学习机elm神经网络模型的输入值,进行深度学习训练,确定elm神经网络模型的输入连接权值、偏置值及最优输出连接权值;步骤s150:将测试样本的奇异值作为确定了输入连接权值、偏置值及最优输出连接权值的elm神经网络模型的输入值,进行学习训练,网络训练的输出结果即为轴承故障诊断结果。在本发明的一个具体实施例中,所述通过vmd算法得到k个imf模态分量包括:对每个imf模态分量函数μk(t)进行希尔伯特变换,得imf模态分量的解析信号,表达式为其中,σt表示单位脉冲函数,j=(1,2,.....k);对每个imf模态分量的解析信号预估中心频率进行混合,并将每个imf模态分量的频谱调制到相应的基频带,计算每个确定了基频带的imf模态分量的解析信号的梯度的平方l2范数,得到对应的imf模态分量表达式为其中,表示偏导数,μk={μ1,μ2,.....μk}表示分解得到的k个imf模态分量,ωk表示imf模态分量的中心频率,f表示所有imf模态分量的求和;引入二次惩罚因子α和lagrang乘法算子λ,获得扩展的lagrange算法,表达式为,利用交替方向乘子算法admm求取扩展的lagrange表达式的鞍点,得k个imf模态分量。在本发明的一个具体实施例中,所述求扩展的lagrange表达式的鞍点包括,步骤一:初始化μk1,ωk1,λ1;步骤二:执行循环:n=n+1;步骤三:更新μk:更新ωk:步骤四:更新λ:步骤五:重复步骤一至步骤四,直到满足迭代停止条件结束迭代,得扩展的lagrange表达式的鞍点。在本发明的一个具体实施例中,所述通过svd算法得到imf模态分量的奇异值包括:将k个imf模态分量构建信号数据m×n阶矩阵h其中,u∈rm×m和v∈rn×n均是正交矩阵,ar=diag(σ1,σ2,…,σr),σi(i=1,2,…,r)表示h的奇异值,且σ1≥…≥σr≥0,r表示h的秩,μi、νi分别为方阵hht和hth的第i个特征向量。在本发明的一个具体实施例中,所述确定elm神经网络模型的输入连接权值、偏置值及最优输出连接权值包括:计算elm神经网络隐藏层输出矩阵f,所述elm神经网络模型的输出表达式可简写为fβ=y,其中,β表示隐藏层神经元的输出连接权值,l表示elm神经网络隐藏层神经元个数,n表示训练样本个数,m表示输出区段数,y是期望输出值;确定β的最小二乘解,输出公式为:其中,f+表示隐藏层输出矩阵f的moore-penrose广义逆,最小二乘解即为最优输出连接权值βi;elm神经网络模型的输出表达式为其中,xi(i=1,2,…,n)表示训练样本的奇异值组成的输入向量,yi(i=1,2,…,n)表示训练样本网络输出向量,αi是连接第i个隐藏层神经元的输入连接权值,bi是第i个隐藏层神经元的偏置值,g表示激活函数。如图2至图7所示,本发明的具体试验过程及结果如下:本试验采取华盛顿天主教大学轴承数据中心提供的滚动轴承故障信号进行验证。分别使用正常、内环故障、外环故障和滚动体故障四种状态下的样本信号对本发明基于vmd,svd和elm的轴承故障诊断方法进行检测验证,具体步骤如下:步骤一、对轴承振动信号进行vmd分解。四种状态下的信号样本数如表1所示。表1四种状态下样本数正常滚动体故障内环故障外环故障样本数24121212进行vmd分解必须要预先给定分解得到的imf模态分量个数k,采用观察中心频率出现过分解的方法来确定k。四种不同状态下,对应不同k值得到的imf模态分量中心频率如表2所示。表2各imf模态分量中心频率从表2中可以看出,在四种不同状态下,当k=5时,模态分量开始出现相似的中心频率,这种现象被称为过分解,因此k值取4。将k=4代入到vmd程序中去,从而得到四种不同状态下信号分解结果如图3,图4,图5,图6所示。步骤二、奇异值分解进一步提取故障特征:四种不同状态下,经过奇异值分解得到的奇异值如表3所示表3svd分解得到的奇异值步骤三、通过极限学习机elm算法进行神经网络训练,实现轴承故障识别与诊断。将四种不同状态下经过奇异值分解得到的奇异值分为两部分分别作为训练样本和测试样本,如表4所示。表4训练样本和测试样本个数elm算法需要指定参数激活函数和隐藏神经元个数,在本次试验中,激活函数g选择sigmoidal函数,隐藏神经元个数l选择10。试验结果如图7所示。从图7可以看出,实际故障类型曲线与识别故障类型曲线完全重合,说明该方法故障诊断正确率为100%.为了说明该方法的有效性,引进svm模型和bp神经网络进行对比分析。试验结果如表5所示。表5试验对比结果网络类型训练样本数测试样本数运行时间识别准确率elm40200.0312100%svm40200.65890%bpnn40200.941480%根据试验结果可以看出基于elm的故障诊断方法明显优于svm和bp神经网络。elm在运行时间和是识别准确率方面具有较高的优越性。可见本发明的方法能够实现对轴承的故障检测与分类,故障识别成功率高,耗时短,具有明显的实际应用价值。综上所述,本发明实施例通过vmd分解算法对信号进行分解,该方法在分解过程中通过循环迭代求取约束变分问题的最优解来确定分解得到的固有模态分量的频率中心及带宽,实现信号各频率成分的有效分离,与emd和lmd相比,vmd分解信号具有收敛快、鲁棒性高的特点;采用svd分解的方法对vmd分解得到的信号进一步进行故障特征提取,从而达到提取信号本质特征和降维的目的;相比于其他故障诊断方法,极限学习机算法在故障识别的速度和识别准确率上有显著的优越性;本发明方法利用样本,无需建立模型,即可实现故障的检测和识别,降低了专业要求,增加了工程应用性。通过以上的实施方式的描述可知,本领域的技术人员可以清楚地了解到本发明可借助软件加必需的通用硬件平台的方式来实现。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在存储介质中,如rom/ram、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例或者实施例的某些部分所述的方法。本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于装置或系统实施例而言,由于其基本相似于方法实施例,所以描述得比较简单,相关之处参见方法实施例的部分说明即可。以上所描述的装置及系统实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本
技术领域
的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1