基于地表图像的盐渍土含盐量估算方法与流程

文档序号:18398913发布日期:2019-08-09 23:40阅读:989来源:国知局
基于地表图像的盐渍土含盐量估算方法与流程

本发明涉及一种基于地表图像的盐渍土含盐量估算方法。



背景技术:

盐渍土是在各种自然环境因素和人为活动因素综合作用下形成的一系列受盐、碱作用的土壤统称。由于土壤中含有大量可溶盐类,从而抑制了作物在土壤中的正常生长。盐渍土按照盐碱化程度可分为轻度盐碱土(土壤含盐量0.1~0.2%)、中度盐碱土(土壤含盐量0.2~0.4%)和重度盐碱土(土壤含盐量0.4~0.6%)。从表面状态来看,轻度与中度盐碱土表面可以生长植被,而重度盐碱土表面为裸土,没有植被生长。

由于气候干旱及不合理的人类活动影响,土壤盐渍化和次生盐渍化日趋严重,全球大约有9.32亿hm2的土壤受到盐渍化的威胁。而次生盐渍化的面积大约为7700万hm2,其中58%发生在灌溉农业区,接近20%的灌溉土壤受到盐渍化的威胁,而且这个比例还在增加。土壤盐渍化对社会经济、自然环境和生态系统带来的破坏越来越受到关注。

传统盐渍土的含盐量测量采用野外定点采样、实验室内分析测试的方式,不仅费时、费力,而且破坏性强,测点少。目前国内外用于土壤含盐量测量较为成熟的仪器有em-38大地电导仪和veris系列设备。em-38是电导率非接触在线测量最具代表性的仪器,它通过测量原生磁场和诱导出的次生磁场的相对关系来快速获取土壤电导率,建立土壤电导率与土壤盐渍化程度之间的定量关系实现对土壤盐分含量的在线快速测量,被广泛的用于土壤质地的测量、土壤盐分含量及分布的调查等领域。然而,在实际应用中,由于em38仪器敏感度较高,其测量结果往往容易受到土壤水分、质地、空气温度、土壤温度等土壤物理特性及外界测量环境的影响。此外,em38反映的是土壤剖面内一定深度的土壤总体含盐量状况,而对于主要影响植被生长的0-20cm土壤表层的含盐量测量的敏感性较差。veris系列土壤盐分测定系统是基于电磁感应原理开发的,为田间接触式设备,配备相应动力牵引,可以实测田间土壤表观电导率、ph值等盐渍化参数,可以直观反映土壤盐渍化的空间分布情况。然而,对于接触式测量的veris系列仪器,当被测地表起伏较大时,会造成接触点无法完全碰触到地面,导致测量结果不准确。

同时,也有一些人致力于盐渍土的分类算法研究。常用的分类算法是基于图像的纹理特征或颜色特征。多年来,除了通过图像统计模式、结构模式、光谱性质反映图像纹理的局部特征。基于信号处理的傅立叶变换、小波变换、gabor变换等多种纹理特征提取算法被广泛应用到图像分析中。但是由于纹理微观异构的复杂性,纹理研究依然是图像识别领域的热点难点。以上这些自然图像的识别分类多是通过转为灰度图像提取纹理信息进行,忽略了图像自身的颜色信息,而在某些情况下,颜色会明显增加判别信息。



技术实现要素:

本发明的目的是为了现有含盐量测定方法复杂以及测量结果不准确的问题,提供了基于地表图像的盐渍土含盐量估算方法。

本发明基于地表图像的盐渍土含盐量估算方法包括以下步骤:

步骤一、拍摄地表图像,采集土样,测试拍摄地表图像的土样的含盐量数据:将地表图像剪裁为统一像素的图像,并与含盐量数据一一对应,建立地表图像和含盐量的数据库,得到训练数据数据库;

步骤二、根据训练数据数据库,基于cnn建立地表图像的特征提取算法,建立模型;

步骤三、设损失函数为所有图像训练误差的绝对值之和;

步骤四、将步骤二得到地表图像的特征与步骤一测定的含盐量代入步骤二的模型中训练,计算训练误差,直至训练误差稳定;

步骤五、优化模型参数:调整隐含层数、节点数、dropout层数和lastlayer层数;重复步骤二~四;

步骤六、选择步骤五中训练误差最小的参数为最优模型参数,保存该模型;

步骤七、读入待测试图像,根据步骤六得到的最优模型估算土壤含盐量。

苏打盐渍土失水开裂过程与一般粘性土壤的失水开裂过程存在较大差异。在盐渍化土壤饱和泥浆失水过程中,土壤颗粒与土壤溶液中可交换阳离子的相互作用下,土壤颗粒间形成了一层较厚的结合水膜,盐分含量越高,结合水膜的厚度就越大,而结合水膜减弱了土壤胶结作用并增大了土壤颗粒间距,使土壤颗粒间的胶结起分散作用,降低了土壤粘聚力,进而降低了土壤的抗拉强度,因此土壤含盐量越高其开裂程度越明显,裂纹长度越大。由此可知,对土壤样本的图像特征(包括纹理和颜色、亮度等)进行综合描述,可以很好的反映其含盐量信息。

本发明首先基于卷积神经网络(cnn)算法针对地表图像充分的提取其颜色、纹理、亮度等二维信息,最后通过支持向量机回归(svr)方法建立特征与含盐量的关系模型。可实现对盐渍土含盐量的在线估算,具有重要的应用价值。该算法识别复杂度低,速度快,稳定性好,实现了简单、精确、高效的盐渍土盐分估算方法。较传统的土壤含盐量室内测量方法,本发明较传统的土壤含盐量室内测量方法计算速度快、复杂度低、成本低,不需要取样测量,可实时得到含盐量结果,含盐量估算小于5mg/g的比例为68%,节约了大量的人力物力。

附图说明

图1是本发明的算法流程图;

图2是本发明卷积神经网络模型的结构框架;

图3为实施例1模型对测试数据含盐量预测的绝对误差统计结果。

具体实施方式

具体实施方式一:本实施方式基于地表图像的盐渍土含盐量估算方法包括以下步骤:

步骤一、拍摄地表图像,采集土样,测试拍摄地表图像的土样的含盐量数据:将地表图像剪裁为统一像素的图像,并与含盐量数据一一对应,建立地表图像和含盐量的数据库,得到训练数据数据库;

步骤二、根据训练数据数据库,基于cnn建立地表图像的特征提取算法,建立模型;

步骤三、设损失函数为所有图像训练误差的绝对值之和;

步骤四、将步骤二得到地表图像的特征与步骤一测定的含盐量代入步骤二的模型中训练,计算训练误差,直至训练误差稳定;

步骤五、优化模型参数:调整隐含层数、节点数、dropout层数和lastlayer层数;重复步骤二~四;

步骤六、选择步骤五中训练误差最小的参数为最优模型参数,保存该模型;

步骤七、读入待测试图像,根据步骤六得到的最优模型估算土壤含盐量。

本实施方式首先基于卷积神经网络(cnn)算法针对地表图像充分的提取其颜色、纹理、亮度等二维信息,最后通过支持向量机回归(svr)方法建立特征与含盐量的关系模型。可实现对盐渍土含盐量的在线估算,具有重要的应用价值。该算法识别复杂度低,速度快,稳定性好,实现了简单、精确、高效的盐渍土盐分估算方法。较传统的土壤含盐量室内测量方法,本实施方式较传统的土壤含盐量室内测量方法计算速度快、复杂度低、成本低,不需要取样测量,可实时得到含盐量结果,含盐量估算小于5mg/g的比例为68%,节约了大量的人力物力。

具体实施方式二:本实施方式与具体实施方式一不同的是:步骤二中cnn包括输入层、卷积层、池化层、relu层、全连接层和输出层。其他与具体实施方式一相同。

具体实施方式三:本实施方式与具体实施方式一或二不同的是:步骤四中训练误差的计算方法为:将地表图像的特征代入模型中,得到估算值,然后估算值与地表图像对应的含盐量相减得到训练误差。其他与具体实施方式一或二相同。

具体实施方式四:本实施方式与具体实施方式一至三之一不同的是:步骤四中每次训练误差变化小于0.0001,即视为稳定。其他与具体实施方式一至三之一相同。

具体实施方式五:本实施方式与具体实施方式一至四之一不同的是:所述的地表图像的特征为纹理、颜色和亮度。其他与具体实施方式一至四之一相同。

采用以下实施例验证本发明的有益效果:

实施例1:以吉林西部盐渍土的含盐量预测为例。

步骤一、拍摄吉林西部盐渍土地表图像,采集土样,测试得到土样的含盐量数据:将地表图像剪裁为60×100像素的图像,并与含盐量数据一一对应,建立地表图像和含盐量的数据库,得到训练数据数据库;

步骤二、根据训练数据数据库,基于cnn建立地表图像的特征提取算法,建立模型;其中,cnn包括输入层、卷积层、池化层、relu层、全连接层和输出层。

步骤三、设损失函数为所有图像训练误差的绝对值之和;

步骤四、将426张图片随机分成71组,每组6张图片。在实验过程中,采用随机循环处理的方式进行,每次随机选取4~6组图片数据进行模型训练,同时,图片对应的含盐量数据也进行相应分组,计算训练误差,直至训练误差稳定:

步骤五、优化模型参数:调整隐含层数、节点数、dropout层数和lastlayer层数,重复步骤二~四;

步骤六、通过实验计算,得到隐含层为2层、节点数512,不使用dropout层,lastlayer为1层时得到的预测结果最好,保存该模型。

步骤七、利用2012年9月野外获得的60个图像为待测试图像。将其剪裁为60×100像素大小,根据步骤六得到的模型估算土壤含盐量。

图1是本发明的算法流程图,如图1所示,本发明是基于python平台实现的,提供一种基于图像的盐渍土含盐量估算方法。该方法分为特征提取和建立含盐量回归模型两个部分。特征部分基于cnn方法对图像的纹理特征和颜色特征、亮度等综合信息进行提取,形成特征向量。模型建立部分将针对训练样本的特征向量与对应含盐量建立回归模型。

图2是卷积神经网络模型的结构框架。图3为模型对测试数据含盐量预测的绝对误差统计结果。

为了验证本发明的效果,将步骤七的预测结果与实验室测量得到的结果进行比较,结果表明,该模型对于测试数据含盐量的预测误差在5mg/g以下的比例为68%。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1