基于单纯形算法的磁纳米粒子临界产热值自动定位方法与流程

文档序号:22257200发布日期:2020-09-18 13:52阅读:154来源:国知局
基于单纯形算法的磁纳米粒子临界产热值自动定位方法与流程

本发明涉及纳米粒子的建模技术领域,具体涉及一种基于单纯形算法的磁纳米粒子临界产热值自动定位方法。



背景技术:

磁纳米粒子在交变磁场下的产热机制已经被广泛应用于各个领域,其中包括磁共振成像、非接触式测温,以及磁纳米热疗等领域。然而,实际应用中,磁纳米粒子的产热热量因多种决定因素的影响,而较难以控制并确定。这些决定因素包括外加磁场的强度、磁场的频率、磁纳米粒子的粒径、纳米粒子的各项异性常数,以及其他属性参数等。因此,磁纳米粒子在磁热疗的应用中也同样存在这样的共性问题。

在传统的技术中,一般通过穷举法进行不断比较分析,最终得到临界值或者接近临界值的纳米粒子属性参数。该方法存在的主要问题是无法比较精确并迅速的获得理想结果,同时最终结果也会存在明显的误差,该误差又将最终影响实际应用的效果。磁纳米热疗领域,现有的发明主要偏向磁纳米颗粒的制备以及药物载体的研究等,而较少涉及基于磁纳米产热机制层面,以及磁纳米粒子属性优化以及温度分布分析等。

针对上述问题,本发明结合单纯形算法、磁纳米产热机制,以及生物传热模型等,提出一种基于单纯形算法的磁纳米粒子临界产热值自动定位方法,旨在有效并快速的定位临界产热值,并最终获得优化参数,从而应用于磁纳米热疗仪中,提高磁纳米热疗仪的磁热疗效果。



技术实现要素:

本发明的目的在于提供一种基于单纯形算法的磁纳米粒子临界产热值自动定位方法,该方法能够有效定位磁纳米热疗过程中磁纳米粒子的临界产热值并最终优化磁纳米粒子的有效属性,以应用于磁纳米热疗仪中,提高磁纳米热疗仪的磁热疗效果。

为实现上述目的,本发明的技术方案是:一种基于单纯形算法的磁纳米粒子临界产热值自动定位方法,包括如下步骤:

步骤s1、构建生物几何模型,并采用单纯形算法对构建的生物几何模型,进行磁纳米粒子产热值经验预估计算;

步骤s2、将步骤s1计算获得的磁纳米粒子产热值作为输入,代入生物传热数学模型中并预测磁热疗过程中生物几何模型温度分布;

步骤s3、判断生物几何模型温度分布的最大值是否满足刚好等于临界安全温度,满足则直接获取生物几何模型温度分布用于步骤s4的分析;否则,返回步骤s1;

步骤s4、根据生物几何模型温度分布,获取此时的最优产热值,并通过产热模型反演出最优产热值下的磁纳米粒子属性,而后应用于磁纳米热疗仪。

在本发明一实施例中,所述步骤s1具体包括如下步骤:

步骤s11、构建生物几何模型;

步骤s12、根据磁场装置属性以及磁纳米粒子属性获得相应的参数;

步骤s13、根据公式计算磁纳米粒子的有效驰豫时间;其中,τeff表示有效驰豫时间,τn表示尼尔驰豫时间,τb表示布朗驰豫时间;

步骤s14、根据公式计算平衡磁化率χ0,而后再根据公式计算复数磁化率的反相分量χ″;其中,μ0为真空中的磁导率,ms为饱和磁化率,vm为磁纳米粒子体积,kb为玻尔兹曼常数,t0为环境温度,f为应用磁场频率;

步骤s15、根据公式p=πμ0fχ″h2计算磁纳米粒子的有效产热值;其中,h表示磁场强度;

步骤s16、将实验值与理论计算值进行分析后,获得矫正系数,并将其应用于磁纳米粒子产热理论模型(即步骤s13-步骤s14)计算中来逼近真实结果。

在本发明一实施例中,步骤s4中,所述产热模型即步骤s11-步骤s16的整体过程。

在本发明一实施例中,步骤s2中,所述生物传热数学模型为偏微分方程;所述将步骤s1计算获得的磁纳米粒子产热值作为输入,代入生物传热数学模型中并预测磁热疗过程中生物几何模型温度分布的过程中采用的求解方法为有限元方法。

在本发明一实施例中,步骤s2中,将步骤s1计算获得的磁纳米粒子产热值作为输入,代入生物传热数学模型中并预测磁热疗过程中生物几何模型温度分布的过程中,需将磁纳米粒子产热值乘以矫正系数用于补偿真实值与理论值的直接差异。

在本发明一实施例中,所述临界安全温度为46℃。

在本发明一实施例中,步骤s2中,所述生物传热数学模型可表示为:

式中,ρt为生物组织的密度,ct为生物组织的比热容,t为生物组织的温度,kt为生物组织的热传导率,qb为血液灌注项,qm为生物体代谢产热的热源项,p为磁纳米粒子的产热。

在本发明一实施例中,生物几何模型区域注入磁纳米粒子后,其特征属性,包括生物组织密度,生物组织比热容,以及生物组织的热传导率将发生改变,而该变化的计算公式为:

其中,ρ′t、c′t、k′t表示生物组织注射磁流体后的密度、比热容及热传导率的理论属性,而下标mnps表示磁纳米粒对应的参数属性,φ为磁流体中磁纳米粒子的体积分数。

相较于现有技术,本发明具有以下有益效果:本发明方法能够有效定位磁纳米热疗过程中磁纳米粒子的临界产热值并最终优化磁纳米粒子的有效属性,以应用于磁纳米热疗仪中,防止磁纳米热疗仪在磁热疗过程中使得生物组织出现过热的情况,进而提高磁纳米热疗仪的磁热疗效果。

附图说明

图1为本发明的方法流程图。

图2为本发明的生物组织几何模型图。

图3为本发明的临界产热值优化过程图。

图4为本发明的磁纳米粒子属性优化过程图。

具体实施方式

下面结合附图1-4,对本发明的技术方案进行具体说明。

如图1所示,本发明实施例提供了一种基于单纯形算法的磁纳米粒子临界产热值自动定位方法,包括如下步骤:

步骤s1、构建生物几何模型,并采用单纯形算法对构建的生物组织几何模型,进行磁纳米粒子产热值经验预估计算;包括如下步骤:

步骤s11、构建生物组织几何模型如图2所示;

步骤s12、根据磁场装置属性以及磁纳米粒子属性获得相应的参数;

步骤s13、根据公式计算磁纳米粒子的有效驰豫时间;其中,τeff表示有效驰豫时间,τn表示尼尔驰豫时间,τb表示布朗驰豫时间;

步骤s14、根据公式计算平衡磁化率χ0,而后再根据公式计算复数磁化率的反相分量χ″;其中,μ0为真空中的磁导率,ms为饱和磁化率,vm为磁纳米粒子体积,kb为玻尔兹曼常数,t0为环境温度,f为应用磁场频率;

步骤s15、根据公式p=πμ0fχ″h2计算磁纳米粒子的有效产热值;其中,h表示磁场强度;

步骤s16、将实验值与理论计算值进行分析后,获得矫正系数,并将其应用于磁纳米粒子产热理论模型计算中来逼近真实结果;

步骤s1的整体过程,即步骤s11-s16即本申请构建的产热模型;

步骤s2、将步骤s1计算获得的磁纳米粒子产热值作为输入,代入生物传热数学模型(所述生物传热数学模型为偏微分方程)中并预测磁热疗过程中生物几何模型温度分布(该过程采用的求解方法为有限元方法,该求解过程中,需将磁纳米粒子产热值乘以矫正系数用于补偿真实值与理论值的直接差异);所述生物传热数学模型可表示为:

式中,ρt为生物组织的密度,ct为生物组织的比热容,t为生物组织的温度,kt为生物组织的热传导率,qb为血液灌注项,qm为生物体代谢产热的热源项,p为磁纳米粒子的产热;

步骤s3、判断生物几何模型温度分布的最大值是否满足刚好等于临界安全温度46℃,满足则直接获取生物几何模型温度分布用于步骤s4的分析;否则,返回步骤s1。该优化迭代过程如图3所示。

步骤s4、根据生物几何模型温度分布,获取此时的最优产热值,并通过产热模型反演出最优产热值下的磁纳米粒子属性(过程如图4所示),而后应用于磁纳米热疗仪。

生物几何模型区域注入磁纳米粒子后,其特征属性,包括生物组织密度,生物组织比热容,以及生物组织的热传导率将发生改变,而该变化的计算公式为:

其中,ρ′t、c′t、k′t表示生物组织注射磁流体后的密度、比热容及热传导率的理论属性,而下标mnps表示磁纳米粒对应的参数属性,φ为磁流体中磁纳米粒子的体积分数。

以上是本发明的较佳实施例,凡依本发明技术方案所作的改变,所产生的功能作用未超出本发明技术方案的范围时,均属于本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1