一种基于概率潮流法的电网短期可靠性评估方法与流程

文档序号:23262108发布日期:2020-12-11 18:51阅读:109来源:国知局
一种基于概率潮流法的电网短期可靠性评估方法与流程

本发明属于电力系统可靠性评估技术领域,尤其涉及一种基于概率潮流法的电网短期可靠性评估方法。



背景技术:

电力系统本质运行在不确定的环境中,系统的一次设备(发电机、输电线路以及变压器等)的随机故障和负荷波动均会引起系统的潮流转移,此外,外界气候环境的恶劣变化也会造成元件故障率增加,进一步加大了发生大停电事故的可能性。近几年来,不断地有发生由系统关键设备故障和恶劣气候因素导致的大规模停电事故,这些停电事故对经济发展、社会生产及人们的日常生活造成了十分恶劣的影响。大面积停电事故经验教训证明,系统受到各种随机因素的影响而发生停电,事故由起因到发生、发展、直至电网崩溃,往往是一个连锁并且短期的过程。这种类型的连锁事故在短期间虽然发生概率低,但对系统所造成的影响极大,因此,在形成可靠性预想故障集时,需要基于系统当前运行状态,预测系统在未来短期可能发生的连锁故障,将其作为一种故障状态考虑进去,以对停电事故进行预警、预防,从而提高系统的安全稳定运行水平。

随着大规模新能源如光伏、风电等接入电网,由于这些接入的分布式电源具有波动性和随机性的特点,在很大程度上会增加电网运行的不确定因素,使得调度与运行人员更加关注于系统未来的一段时间或者几个小时的短期可靠性水平,便于掌握电网未来短期的运行特性,及时地预防出现的各种不确定事故。因而,在对系统进行短期可靠性评估时,除了需要考虑系统可能会发生的随机故障,还需计及如分布式电源、负荷等随机性较强的因素,以便更全面准确地评估系统的可靠性水平。

系统的故障、分布式电源出力、负荷等随机因素会在短时间内发生较大的变化,且难以对其进行准确预测,给系统带来了较大的不确定性,必定会大大增加系统调度与运行的风险与难度。一方面,传统可靠性评估方法已经较难适应系统短期运行下的新特点,不能满足短期可靠性评估的要求;另一方面,当前短期可靠性评估研究较少,评估过程中忽略了负荷、分布式电源等随机因素影响。因此,在短期可靠性评估方法上,有必要研究一种能考虑系统负荷、分布式电源等随机因素影响的可靠性评估方法。



技术实现要素:

本发明要解决的技术问题是:提供一种基于概率潮流法的电网短期可靠性评估方法,以解决现有技术针对电网短期可靠性评估采用传统可靠性评估方法已经较难适应系统短期运行下的新特点,不能满足短期可靠性评估的要求;另一方面,当前短期可靠性评估研究较少,评估过程中忽略了负荷、分布式电源等随机因素影响等问题。

本发明的技术方案是:

一种基于概率潮流法的电网短期可靠性评估方法,它包括:

步骤s1:采集系统气候环境数据及历史负荷、光伏出力的样本数据,利用粒子群算法结合相关向量机算法即pso-rvm算法预测出系统的负荷和光伏出力短期概率分布;

步骤s2:分别采用蒙特卡洛法、半不变量结合gram-charlier级数展开法或三点估计法计算系统正常运行下的概率潮流;再将这三种概率潮流计算方法与切负荷计算方法结合进行优缺点分析,选择最合适的方法计算可靠性评估过程中的概率潮流;

步骤s3:采用解析法评估计算系统可靠性指标的短期序列,从而得到指标的时序概率分布及置信范围。

步骤s1所述预测出系统的负荷和光伏出力短期概率分布的具体步骤包括:

步骤s11:对系统气候环境数据以及原始样本数据进行归一化,采用模糊聚类提取相似日,然后根据负荷、光伏出力特性和相似日构造数据样本;

步骤s12:计算系统发生n-1阶故障下的系统初始可靠性指标lolp、elc;

步骤s13:采用db4小波分解出不同数据样本的低频周期分量以及高频波动分量;

步骤s14:使用粒子群算法结合相关向量机算法分别对低频周期分量以及高频波动分量进行预测,将各分量预测结果叠加,并分别获取负荷、光伏出力的时序概率分布。

所述归一化方法为:

式中:xmax、xmin分别为样本数据中的最大值、最小值;xi、分别为归一化前后的数据;

所述采用模糊聚类提取相似日的步骤为:

a.设样本数为x,分级数为nc,按sturges公式确定最大分类数为nh=1+log(x)/log(2),最小分类数nl=1;

b.按照二分法原则,令nz=(nl+nh)/2,分别取nc=nz-1、nz、nz+1,进行聚类分析得到各分类数下的分析结果,同时得到不同分类数下的相似度水平u1、u2、u3,选择最优聚类方案;采用相似度水平u=d0/σl,其中d0为各聚类中心ci间最小距离,即d0=min(|ci-ci+1|);σl为每个分类中各样本ai={ai1…ail}与该类中心的最大距离,即

c.若u2≥u1且u2≥u3,则转(d);若u1≤u2≤u3,则取nl=nz;若u3≤u2≤u1,则取nh=nz;若nl=nh,则转(d),否则转(b);

d.计算完成,相似度水平u2下对应的方案为最优聚类方案。

所述预测负荷、光伏出力的概率分布的公式为:

y*=μtφ(x*)

式中:t是待测数据,t*是待测数据x*的预测值,αmp、为通过最大化边缘似然场分布求取的权值最大后验估计,服从所示的高斯分布,φ为所有基函数对输入x*的响应矩阵,y*为预测均值,可视为t*的预测值,为t*的预测方差。

所述采用蒙特卡洛法计算系统的概率潮流的方法为:

a.建立系统各节点发电机、负荷以及光伏电源随机变量的概率分布模型;

b.按照随机变量各自相应的概率分布分别抽样生成随机数值序列;

c.对所产生的随机数值序列样本进行确定性潮流计算,计算系统节点电压和线路潮流的各种估计量。

所述采用半不变量结合gram-charlier级数展开法计算系统概率潮流的方法包括:

a.将潮流计算中的节点状态变量δx和支路功率变量δz在基准运行点(x0,z0)进行泰勒级数展开,并忽略二次及高次项,为:

进一步有:

式中:δx、δz、δw分别表示节点状态向量扰动、支路功率向量扰动和节点注入功率向量扰动,j0为雅克比矩阵,s0和t0为潮流灵敏度矩阵;

b.用半不变量表达δx和δz,考虑光伏出力及负荷的不确定性,假定两者相互独立,利用半不变量的独立可加性,节点注入功率的扰动中δw:

c.对δx(k)和δz(k)进行标准化处理,通过gram-charlier级数的hermite多项式特性展开求取其概率分布,随机变量的累积分布函数有:

其中为标准化后的随机变量,即对于随机样本x的期望值为μx,标准差为σx,标准化后的随即变量为分别为服从正态分布随机变量的概率密度函数和累积分布函数;gi为标准化随机变量的i阶半不变量,为i阶hermite多项式;

d.对进行标准化还原,求得fg(x)

x的概率密度函数写为:

所述采用三点估计法计算系统概率潮流的方法为:

a.设系统的输入随机变量x=[x1,x2,…,xn]和输出随机变量r=[r1,r2,…,rm],有:r=f(x)=f(x1,x2,…,xn)

f为m维函数向量,f={f1,f2,…,fm};通过在每个x的xi,k(k=1,2,3)上确定三个采样值,采样值的具体计算式:

xi,k=μxi+ξxi,kσxik=1,2,3

式中,ξxi,k、μxi和σxi分别为xi,k第k个随机变量位置参数、期望和标准差;

b.在进行函数计算时,将n维的x用三点估计法所得的2n+1个估计点进行代替,即对xi用3个估计点代替,

c.重复进行2n+1次计算得输出变量ri,k,它的第l阶矩由下式估计

其中e(rk,il)为ri,k的均值,ωi,k为xi,k的权重;

计算得到系统的切负荷量和指标序列后,通过核心平滑密度估计求取对应的概率密度,公式为:

所述最合适的方法为蒙特卡洛法;

所述切负荷计算方法采用蒙特卡洛法计算故障下系统的概率切负荷环节,得到切负荷的序列{edns1,edns2…ednsn}。

本发明的有益效果是:

本发明在可靠性评估中引入概率潮流,建立系统的概率切负荷策略,形成一种概率性的短期可靠性评估算法,其目的在于能够考虑评估过程中除故障之外的负荷、光伏电源等随机因素的影响,最后计算出的评估指标的时序概率分布及置信范围,能从本质上反映由随机因素所导致的评估不确定性,从而更合理地指导电网调度运行。

与现有的短期可靠性评估方法相比,本发明能有效计及可靠性评估中电网负荷、分布式电源等随机因素的影响短期,能够从本质上由随机因素所导致的评估不确定性,从而更合理地为电网的调度及运行提供辅助决策。

解决了现有技术针对电网短期可靠性评估采用传统可靠性评估方法已经较难适应系统短期运行下的新特点,不能满足短期可靠性评估的要求;另一方面,当前短期可靠性评估研究较少,评估过程中忽略了负荷、分布式电源等随机因素影响等问题。

附图说明

图1为具体实施方式中实际电网部分输出变量的概率密度示意图;

图2为具体实施方式中基于常规确定潮流法的电网短期可靠性评估流程示意图;

图3为具体实施方式中本发明可靠性评估流程示意图;

图4为具体实施方式中系统elc时序概率密度曲线示意图;

图5为具体实施方式中系统elc时序概率分布曲线示意图;

图6为具体实施方式中系统lolp时序概率密度曲线示意图;

图7为具体实施方式中系统lolp时序概率分布曲线示意图;

图8为具体实施方式中系统edns时序概率密度曲线示意图;

图9为具体实施方式中系统edns时序概率分布曲线示意图。

具体实施方式:

下面结合附图及实例对本发明做进一步说明。

图1为与本发明比较的传统确定性潮流法下的电网短期可靠性评估流程图,在确定性潮流计算下,要计及光伏出力和负荷的随机因素,只能通过算法预测t时段下两者具体的数值大小μ,进而在预测值下对系统进行切负荷及评估指标计算。

图2为本发明的基于概率潮流法的电网短期可靠性评估流程框图,具体的评估方法包括以下步骤:

步骤s1:在获取系统气候环境数据及历史负荷、光伏出力的样本数据基础上,利用粒子群算法结合相关向量机算法预测出系统的负荷、光伏出力短期概率分布。

步骤s2:分别采用蒙特卡洛法、半不变量结合gram-charlier级数展开法、三点估计法计算系统正常运行下的概率潮流,再对此三种方法与切负荷计算结合的优缺点进行预分析,选择合适的方法计算可靠性评估过程中的概率潮流。

步骤s3:概率性的处理过程中,采用解析法评估计算系统可靠性指标的短期序列,从而得到指标的时序概率分布及置信范围。

进一步地,步骤s1进一步包括以下步骤:

步骤s11:对系统气候环境数据以及原始样本数据进行归一化,采用模糊聚类提取相似日,其次根据负荷、光伏出力特性和相似日构造数据样本。

归一化处理:

式中:xmax、xmin分别为样本数据中的最大值、最小值;xi、分别为归一化前后的数据。

模糊聚类提取相似日的步骤如下所示:

a.设样本数为x,分级数为nc,按sturges公式确定最大分类数为nh=1+log(x)/log(2),最小分类数nl=1。

b.按照二分法原则,令nz=(nl+nh)/2,分别取nc=nz-1、nz、nz+1,进行聚类分析得到各分类数下的分析结果,同时得到不同分类数下的相似度水平u1、u2、u3,选择最优聚类方案。采用模型的相似度水平u=d0/σl,其中d0为各聚类中心ci间最小距离,即d0=min(|ci-ci+1|);σl为每个分类中各样本ai={ai1…ail}与该类中心ci={ci1…cil}的最大距离,即

c.若u2≥u1且u2≥u3,则转(4);若u1≤u2≤u3,则取nl=nz;若u3≤u2≤u1,则取nh=nz;若nl=nh,则转(d),否则转(b)。

d.计算完成,相似度水平u2下对应的方案为最优聚类方案。

步骤s12:计算系统发生n-1阶故障下的系统初始可靠性指标lolp、elc。

步骤s12:采用db4小波分解出不同数据样本的低频周期分量以及高频波动分量。

步骤s13:使用粒子群算法结合相关向量机算法(pso-rvm算法)分别对低频周期分量以及高频波动分量进行预测,将各分量预测结果叠加,并分别获取负荷、光伏出力的时序概率分布。

经pso-rvm算法预测的负荷、光伏出力的概率分布为:

y*=μtφ(x*)

其中:t是待测数据,t*是待测数据x*的预测值,αmp、为通过最大化边缘似然场分布求取的权值最大后验估计,可见其服从所示的高斯分布,φ为所有基函数对输入x*的响应矩阵,y*为预测均值,可视为t*的预测值,为t*的预测方差。

步骤s2进一步包括以下步骤:

步骤s21:采用蒙特卡洛法计算系统的概率潮流

a.建立系统各节点发电机、负荷以及光伏电源等随机变量的概率分布模型。

b.按照随机变量各自相应的概率分布分别抽样生成随机数值序列。

c.对所产生的随机样本进行确定性潮流计算,计算系统节点电压和线路潮流的各种估计量。

步骤s22:采用半不变量结合gram-charlier级数展开法计算系统概率潮流

a.将潮流计算中的节点状态变量δx和支路功率变量δz在基准运行点(x0,z0)进行泰勒级数展开,并忽略二次及高次项,为:

进一步有:

其中,δx、δz、δw分别表示节点状态向量扰动、支路功率向量扰动和节点注入功率向量扰动,通过常规的潮流计算求出基态的x0、z0,雅克比矩阵j0,通过进一步求解潮流灵敏度矩阵s0、t0和随机扰动δx、δz。

b.用半不变量表达δx和δz,考虑光伏出力及负荷的不确定性,假定两者相互独立,利用半不变量的独立可加性,节点注入功率的扰动中δw:

c.对δx(k)和δz(k)进行标准化处理,通过gram-charlier级数的hermite多项式特性展开求取其概率分布,随机变量的累积分布函数有:

其中为标准化后的随机变量,即对于随机样本x的期望值为μx,标准差为σx,标准化后的随即变量为分别为服从正态分布随机变量的概率密度函数和累积分布函数;gi为标准化随机变量的i阶半不变量,为i阶hermite多项式。

d.对进行标准化还原,可求得fg(x)。

x的概率密度函数可写为:

步骤s23:采用三点估计法计算系统概率潮流

a.设系统的输入随机变量x=[x1,x2,…,xn]和输出随机变量r=[r1,r2,…,rm],有:

r=f(x)=f(x1,x2,…,xn)

其中f为m维函数向量,f={f1,f2,…,fm}。通过在每个x的xi,k(k=1,2,3)上确定三个采样值,采样值的具体计算式:

xi,k=μxi+ξxi,kσxik=1,2,3

式中,ξxi,k、μxi和σxi分别为xi,k第k个随机变量位置参数、期望和标准差。

b.在进行函数计算时,将n维的x用三点估计法所得的2n+1个估计点进行代替,即对xi用3个估计点代替,其余取均值。

c.重复进行2n+1次计算可得输出变量ri,k,它的第l阶矩可由下式估计。

其中e(rk,il)为ri,k的均值,ωi,k为xi,k的权重。

以下以贵州某地区实际电网为例,计算其短期可靠性指标的概率分布及置信区间。

步骤s3进一步包括以下步骤:

步骤s31:采用解析法评估计算系统可靠性指标的短期序列,从而得到指标的时序概率分布及置信范围。

计算得到系统的可靠性指标序列后,通过核平滑密度估计求取对应的概率密度:

其中y为可靠性指标序列,n为样本数量,h为带宽,k为核函数。

s4、以贵州某地区实际电网为例分别采用蒙特卡洛法、半不变量结合gram-charlier级数展开法及三点估计法进行系统正常运行下的概率潮流计算,结果如图1所示。

在对此三种方法与切负荷计算结合的优缺点进行预分析,如表1所示。

表1.不同概率潮流法与切负荷计算结合的优缺点分析

步骤s41:以贵州某地区实际电网为例,采用pso-rvm算法预测该电网的负荷、光伏出力的短期概率分布。

步骤s42:再利用蒙特卡洛法抽样rts-79系统和实际地区电网的连锁故障初始环节,辨识计及电网故障冲击风险和均匀度影响的中间故障元件,获取系统的预想事故链,计算中间可靠性指标lolp、elc。对该实际电网进行概率潮流计算,并选择蒙特卡洛法计算故障下系统的概率切负荷环节,得到切负荷的序列{edns1,edns2…ednsn}。

表2.基于常规确定性潮流法的该地区实际电网短期可靠性评估结果

表3.基于概率潮流法的该地区高压电网短期可靠性评估结果置信区间

步骤s43:采用解析法评估计算该实际电网可靠性指标的短期序列,并通过核心平滑密度估计求取对应可靠性指标的概率密度。本文以贵州某地区电网为例,在通过pso-rvm算法预测系统负荷、光伏出力的短期概率分布的基础上,分别采用基于常规确定性潮流法、概率潮流法对系统进行短期可靠性评估,得到的可靠性评估结果如表2、表3所示。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1