火灾警报系统的制作方法

文档序号:6693238阅读:191来源:国知局
专利名称:火灾警报系统的制作方法
技术领域
本发明涉及一种火灾警报系统,特别是一种通过对两种与火灾相关的不同物理参数的分析来判定火灾的存在的火灾警报系统。
该系统具有一个控制器,控制器参照主要判据检查探测到的温差ΔT和探测到的烟雾浓度S,以便当满足上述任一主要判据时提供一个指示可能有火灾发生的火灾预警信号。
这样,通过对烟雾浓度(S)和温差(ΔT)以及这些参数的函数选择适当的阈值,就有可能可靠地探测出在多种环境中发生的火灾。特别是通过将温差(ΔT)作为一个判据并作为一个与烟雾浓度(S)相结合的变量以构成不等式的函数,就有可能对不同火源引起的火灾,甚至在较早阶段就给出一个一致且可靠的探测结果。
可以选择第一烟雾阈值(S1)使之大于烟雾浓度(S),这个烟雾浓度(S)是由一个在低于第一温差阈值(TD1)的一个预定低限(TDLOW)以下的温差(ΔT)低范围的上述函数给出的。同样情况,可以选择第一温差阈值(TD1)使之大于由一个在低于第一烟雾阈值(S1)的一个预定低限(SLOW)以下的低范围的烟雾浓度(S)的上述函数给出的温差。通过对阈值(S1,TD1)的选择,该系统能成功地探测出具有热度强但烟雾浓度较低的特点的火灾,例如欧洲标准EU54-9中规定的TF6型火灾(液体火<甲基酒精),和具有可忽略的热度增加但伴有相当可观的烟雾浓度的特性的闷烧,例如TF-2型火灾(闷烧热解作用<木材>)和TF-3型(增长中的闷烧<棉花>)。
更好的是,主要判据还可额外包括该温度是否超过了第一温度阈值(T1)[如,T≥57℃]以对具有热度增长迅速的特点的火灾提供更为可靠的探测。
将控制器配置为,在一定时间间隔检查是否任一主要判据被满足,并具有一个火灾判定函数以便对真正发生的火灾提供一个可靠的探测。也就是在发出火灾预警信号时,该火灾判定函数运行以给出一个判定时间周期,并当在这判定时间周期内任一主要判据连续被满足时,即发出火灾判定信号指出真的发生了火灾。由此可做出不带任何因暂时干扰而可能导致的误差的可靠的火灾判定。
更好地,赋予了控制器一个改变判定时间周期的加权函数,根据该判定时间周期可以依靠主要判据之一以提供火灾预警信号从而对真实火灾存在的判定加以一个权数,由此反映出因不同火源造成的不同火灾发展表现,以便获得对真实火灾存在的可靠判定。
此外,为使本系统更智能地学习并反映出探测器的实际安装环境,将本系统更好地设计成具有能给出不同判定时间周期的不同运行模式,并将阈值装置配置为还包含与主要判据相类似、但具有低阈值(S2,TD2)、且不等式函数分别不同于主要判据的不等式函数的严格判据。在这较好版本中控制器执行
a)将探测到的温差ΔT和探测到的烟雾浓度S与严格判据相核对以提供一个火灾指数,指出哪个严格判据在一个过去的预定时期中内被哪一编号的这种事件所满足,和b)根据该火灾指数选定其中一个不同的运行模式,以便根据给予选择的模式的判定时间周期确定火灾的真实发生。
这样,就能够根据给予选出的模式的不同判定时间周期作出真实的火灾确定,反映出实际的环境。
详细说来,本系统具有一个时间表,该时间表规定了配合环境、限定时间判定范围的不同方式,从而使控制器从时间表中选出限定时间判定范围的方式,根据其中一个主要判据被依据来提供火灾预警信号。至少其中一个在本系统中提供的运行模式被限定来改变一个特定方案中的判定时间周期。在这方面控制器的操作是1)将探测到的温差ΔT和探测到的烟雾浓度S与严格判据相核对以提供一个火灾指数,指出哪一个严格判据在一个过去的预定时期内为哪一编号的这种事件所满足,2)根据该火灾指数选定其中一个不同的运行模式,3)根据选定运行模式的特定方案来改变选自时间表上的判定时间周期方式,和4)基于改变的判定时间周期来确定火灾的真实发生。
这样,火灾的真实发生就能以更为高深复杂的方式来认识,以更好地反映出由本系统自身掌握的实际环境。
当其中一个主要判据(i)和(iii)被满足时,改变判定时间周期的特定方案,例如,由下列步骤来限定a)从最后一个在先时间周期中满足于其中一个主要判据的烟雾浓度(S)中取出多个样品;b)确定这些取样的烟雾浓度(S)超出通过主要判据(i)和(iii)相应的一个所确定的烟雾浓度水平的量;c)将烟雾浓度(S)的超出量加在一起;和d)将这加在一起的量转换成判定时间周期。
另外,阈值设置可以设计成根据选定的运行模式来变更至少其中一个第一烟雾阈值(S1)和不等式的函数。
用于本发明的不等式的函数可以是一个线性函数,由α·S+ΔT≥β来表示,其中为了易于数字处理,α和β都是常数。
本发明的这些和其它的目的和优点从下面结合附图
对最佳实施例的描述中可以更为明显。
图5是一个说明判定火灾确实存在的一种方式的曲线图,这种判定的方式出自于吸烟或蒸汽模式中。其时在探测到的烟雾浓度已经超过烟雾浓度阈值——这是上述主要判据之一——的情况下预警信号已经产生;图6是一个说明在一个作为另一个主要判据的不等式被满足的情况下预警信号已经产生时,判定火灾确实存在的一种方式的曲线图;图7是说明上述系统的火灾判定程序的一个流程表;和图8是说明上述系统的学习程序的一个流程表。
有时减少函数也被称为第一组合阈值。
当任何一个主要判据被满足,控制器40就提供火灾预警信号并进入一个检验阶段,在火灾预警条件出现之后立即检查该火灾预警条件持续时间是否连续在判定时间周期内。如果火灾预警条件持续在判定时间周期内,控制器40就发出火灾警报信号。根据是哪一个主要判据被满足,以及根据由系统从各种预先确定的运行模式中选择出最好地反映出探测器被安装的环境中的实际情况的一个特定的运行模式,判定时间周期的设定是可变化的。●学习和识别运行模式为了使系统能和实际环境相容,该系统设有一套学习哪一个运行模式和实际环境最相符合而实现火灾探测的程序。为了这个目的,阈值表51提供了严格判据,如图3所示。这些严格判据相似于主要判据,并且有以下方面(i)烟雾浓度(S)是否超过第二烟雾阈值(S2)[如 ];(ii) 温差(ΔT)是否超过第二温差阈值(TD2)[如ΔT≥12℃];和基于随着S的增加,ΔT减少的函数,烟雾浓度(S)和温差(ΔT)的组合是否满足一个不等式[如2S+ΔT≥10]。
有时减少函数也被称为第二组合阈值。
如图4所示,由本系统提供的运行模式包括一个默认模式,一个清洁房间模式,一个加热模式,一个烹饪模式和一个吸烟或蒸汽模式。严格地说,一个或多个模式都有其自身的限定判定时间周期的方式,使一个模式到其他模式之间的时间范围可以有不同的变化。另外,除了默认模式和吸烟或蒸汽模式以外的模式的设定,对一个或多个主要判据都作了修改,如下面表1所示。
表1 控制器40负责的在过去的一个月周期内有多少次数和哪一个严格判据曾被满足过为基础,选择所有模式中的一个模式。在相同的周期内,当第二温差阈值(TD2)被超过2次以上,就为火灾确定选择加热模式;在相同的周期内,当第二组合阈值被超过(2S+ΔT≥10)2次以上,就选择烹饪模式;在相同的周期内,当第二烟雾阈值(S2)被超过2次以上,就选择吸烟或蒸汽模式;在相同的周期内,没有任何严格判据至少一次被超过,就选择清洁房间模式;否则,就选择默认模式。
在学习了实际环境以选择合适的运行模式之后,参照经被选中的模式修改过或未修改过的主要判据,以及参照根据哪一个主要判据被依据并且对于被选中的模式也是特定的而确定的判定时间周期,本系统就进行火灾探测。●判定时间周期和火灾存在的确定1)当第一温差阈值(TD1)被超过(ΔT≥18℃)或第一温度阈值(T1)被超过(T≥57℃),以提供火灾预警信号,判定时间周期被固定为9秒。对由欧洲标准EU54-9规定的并且在图2中示范性地说明的火灾特征所表征的TF6类型火灾(液体火灾<甲基酒精>)而言,ΔT≥18℃的情况是典型的。在火灾预警信号出现之后,紧接着火灾预警条件持续时间超过了9秒钟,控制器40作出反应发出火灾警报信号,说明火灾确实存在。
2)当第一烟雾浓度阈值(S1)被超过(S≥S1),以提供火灾预警信号时,判定时间周期根据吸烟或蒸汽模式是否被选择而有不同的确定。在图2中示范性地说明的火灾特征所表征的TF2(闷烧热解<木材>),TF3(发光闷烧<棉花>)和TF4(敞开的塑料<聚胺酯>)类型火灾而言,这样的火灾预警条件是典型的。在这样的关系中应该注意到TF4类型的火灾包括这样的火灾,它并不伴随着烟雾浓度的大量提升。但是通过应用第一组合阈值,这样的火灾还是能被成功地探知。
在吸烟或蒸汽模式未被选择的场合,控制器40计算出在紧接着先前60秒内探测到的烟雾浓度的(Davg),并且从下面表2中显示的时间表52中推导出符合所计算出的平均值的数值来。如果火灾预警条件在第一次这样的情况出现以后持续了整个这样推导出的时间范围,控制器就发出火灾警报信号。
表2 在这个模式被选择的场合,除了获得相类似的烟雾浓度的平均值(Davg)外,控制器40还计算出一个在第一烟雾浓度阈值(S1)被首次超过以后对每9个被探测到超过这个阈值(S1)的连续的烟雾浓度中超过第一烟雾浓度阈值(S1)的超过的烟雾浓度数量。然后,控制器40得出一个经被2除的这个超过数量的总值 ,并且根据相当于1秒的一个单位的烟雾浓度 的转换率将这个总值 转换成秒。这样转换的值被加到根据烟雾浓度的平均值(Davg)从上述时间表中推导出的数值中去,结果就给出了判定时间周期。这样确定的时间范围就设定为从第九次火灾预警条件的发生开始,如图5中所显示的那样。如果S≥S1的情况持续发生在判定时间周期内,控制器40就在判定时间周期过去以后立即发出火灾警报信号。
3)当第一组合阈值被超过(在默认模式/吸烟或蒸汽模式或加热模式中2S+ΔT≥12;在清洁房间模式中2S+ΔT≥10;在烹饪模式中2S+ΔT≥14),而判定时间周期则根据烹饪模式是否被选择而有不同的确定。对在图2中示范性地说明的火灾特征所表征的TF1(敞开的植物纤维物质)和TF5(液体火灾<n-hepthane>)型火灾而言,这样的火灾预警条件是典型的。
在烹饪模式未被选择的场合,控制器40计算出一个在第一组合阈值被首次超过以后对每9个被探测到超过这个第一组合阈值的连续的事件中超过随着沿第一组合阈值(例如2S+ΔT=12)的直线中的瞬时温差(ΔT)而变化的烟雾浓度阈值(VS)的超过的烟雾浓度的数量。然后,控制器40得出一个被除以2的这个超过数量的总值 ,并且根据相当于1秒的一个单位的烟雾浓度 的转换率将这个总值 转换成相应的秒。这样,经转换的数值(秒)就给出了设定为从第九个火灾预警条件的发生开始的判定时间周期,如图6中所示的那样。如果火灾预警条件持续发生在经这样确定的判定时间周期内,控制器40就在判定时间周期过去以后立即发出火灾警报信号。
在烹饪模式被选择的场合,控制器40计算出一个在第一组合阈值被首次超过以后对每9个被探测到超过这个第一组合阈值的连续的事件中超过变化的烟雾浓度阈值(VS)的超出的烟雾浓度的数量。然后,控制器40得出一个超出数量的总值 ,并且根据相当于1秒一个单位烟雾浓度 的转换率将这个总值 转换成相应的秒。这样,以在前述场合中一样的方式,经转换的数值(秒)就给出了设定为从第九个火灾预警条件的发生开始的判定时间周期。如果火灾预警条件持续发生在经这样确定的判定时间周期内,控制器40就在判定时间周期过去以后立即发出火灾警报信号。在这个方式中,能够作出和实际环境以及不同的火灾特性或火灾起源相称的坚定的及可靠的火灾确定。
在上面的叙述中,为了示范的目的给出了各种阈值的个别的数值和常数,这些数值和常数是可以根据特定的需要或规则进行修改的。
上述的火灾判定和进行模式的选择始终都是由控制器40根据储存在存储器内的程序执行的。图7说明了由用于判定火灾确实存在的程序的不断重复的一个火灾判定顺序的流程图。在顺序中的第一步骤(步骤1)是检查被探测到的参数是否满足任何一个主要判据。如果是满足的,则计数器加1,以累积火灾预警条件的火灾计数(Fapc)(Fapc=Fapc+1);如果不满足,则计数器减1(Fapc=Fapc-1)。当火灾计数超过8(Fapc>8)时,计数就固定为8(Fapc=8),并且进行一个控制步骤,检查一个火灾判定过程是否在进行之中。当火灾判定过程还没有开始,也就是第9个火灾情况的发生是首次在步骤2被获知,控制器作出反应,从存储器中推导出判定时间周期(Tmax),准备参照推导出的判定时间周期(Tmax)判断火灾的存在,并且在同一时间设置起一个火灾判定过程标志,该标志说明,顺序已经进入了火灾判定过程。如果火灾预警条件继续超过9次,紧跟步骤2通过步骤3达到步骤4,在步骤4检查火灾警报信号是否已经发生。如果未发出,则时间计数加1(T=T+1),并且接着在步骤5和推导出的时间判定范围(Tmax)比较,以检查是否T>Tmax。在重复上述顺序以后,当T>Tmax,即火灾预警条件持续在推导出的判定时间周期(Tmax)内,在步骤6就检查是否设置有重新开始的标志并且在步骤7检查火灾警报信号是否已经发出。当在步骤6和步骤7中的情况未遇到,就发出火灾警报信号。
当紧跟火灾预警条件以后不是那样的情况,并且持续了这样的时间间隔,即火灾计数减到了零(Fapc=0),则在步骤8检查火灾判定过程是否已经开始。如果发现已经开始,则设置一个重新开始的标志以说明重新将火灾计数(Fapc)和时间计数(T)设置为零的必要性,这两个计数设置为零的结果是使系统准备好重新开始火灾判定顺序。重新开始标志设置以后,当判定时间周期(Tmax)规定的时间已经过去,紧跟步骤6的就是通过将火灾计数和时间计数重新设置为零并且清除重新开始标志和火灾判定标志,而重新开始这样的顺序,使系统对另一个的火灾预警条件的首次发生作出反应。
图8说明了一个和上述火灾判定顺序并行重复的学习顺序,如同前面讨论的一样,该顺序的目的是从各种模式之中选择一种模式。学习顺序的执行相对于火灾判定顺序是在相对长的间隔之中。例如,每13分钟一次。为了便于理解给予系统的学习能力,在图中说明的学习顺序是为了检验吸烟或蒸汽模式是否被选择。首先将当前的烟雾浓度(S)和严格判据的第二烟雾阈值S2进行比较,严格判据的第二烟雾阈值S2是主要判据S1的一半。如果S>S2,则检查自从先前S>S2的事件,即根据严格判据探测到的火灾预警条件发生以来是否已经过去了36小时或更长。如果是这样,则该即刻事件的时间标志就被记录在存储器50的学习表53中,并且在这同一时间,学习计数被加1。接着,检查在一个多月以前是否有任何这样的事件,即根据严格判据探测到的火灾预警条件的记录。如果有,则在一个多月以前发生的事件的记录被删除而学习计数则减1。最后,检查学习计数是否超过三(3),即在过去的一个月期间根据严格判据的火灾预警条件是否被探测到3次或更多次。如果在此期间被发现3次或更多次事件,则系统就选择吸烟或蒸汽模式。否则该模式便被放弃。在类似的方式中,对其他模式(加热模式,烹饪模式和清洁房间模式)的检验和上述的顺序并行地或串行地进行。
权利要求
1.一种火灾报警系统包括在一个目标环境里探测烟雾浓度(S)的一个烟雾探测器;探测目标环境的温度(T)以给出在一个预先确定的时间间隔里的温差(ΔT)的一个温度探测器;包含用以确定火灾存在的众多主要判据的阈值设置,所述主要判据包括(i)烟雾浓度(S)是否超过第一烟雾阈值(S1);(ii)温差(ΔT)是否超过第一温差阈值(TD1);和(iii)烟雾浓度(S)和温差(ΔT)的组合是否满足一个基于随着S的增加ΔT减少的函数的不等式;一个通过参照所述主要判据检查被探测的温差ΔT和被探测的烟雾浓度S,因而当上述任何一个主要判据被满足时能提供说明可能存在火灾的火灾预警信号的控制器。
2.如在权利要求1中所述的火灾警报系统,其特征在于,其中所述第一烟雾阈值(S1)大于烟雾浓度(S),这个烟雾浓度(S)是由一个低于一个预定低限(TDLOW)的低范围的温差(ΔT)的上述函数给出的,该预定低限(TDLOW)低于第一温差阈值(TD1),和所述第一温差阈值(TD1)大于由一个低于一个预定低限(SLOW)的低范围的烟雾浓度(S)的上述函数给出的温差,该预定低限(SLOW)低于第一烟雾阈值(S1)。
3.如权利要求1中所述的火灾警报系统,其特征在于,其中所述主要判据进一步包括温度是否超过第一温度阈值(T1)。
4.如权利要求1中所述的火灾警报系统,其特征在于,其中所述控制器在一个有规律的短的时间间隔内进行检查是否有任何主要判据被满足,所述控制器具有一种火灾判定功能,在所述火灾预警信号发生时,该功能提供一个判定时间周期并且发出一个火灾判定信号,当任何一个所述主要判据被持续在所述判定时间周期内被满足时,该火灾判定信号说明火灾确实存在。
5.如权利要求4中所述的火灾警报系统,其特征在于,其中所述控制器有一个改变所述判定时间周期的加权函数,根据这个判定时间周期,其中的一个所述主要判据可以藉以提供所述火灾预警信号,从而对确定火灾的真实发生加以一个权数。
6.如权利要求4中所述的火灾警报系统,其特征在于,其中所述系统具有不同的运行模式,每个运行模式都指定有互相不同的所述判定时间周期,所述阈值设置进一步包含严格判据,该严格判据类似于所述主要判据,但具有低的阈值(S2,TD2)和不等式函数,分别和所述主要判据的阈值和不等式函数不同,和所述控制器的运行a)参照所述严格判据检查探测到的温差ΔT和探测到的烟雾浓度S,从而提供一个火灾指数,指出哪一个严格判据在一个过去的预定时间范围内为哪一号的这种事件所满足,和b)根据该火灾指数选定其中一个所述不同的运行模式,从而在所选定的模式中指定的判定时间周期的基础上确定火灾的确实存在。
7.如权利要求4中所述的火灾警报系统,其特征在于,其中所述系统具有一个时间表,表中规定了限定所述时间判定范围的不同的方式,所述控制器从所述时间表中选择限定时间判定范围的方式,根据该时间判定范围,其中一个所述主要判据藉以提供所述火灾预警信号,所述系统进一步提供不同的运行模式,至少一种运行模式以一种特殊的方案修改了由所述时间表规定的所述判定时间周期。所述阈值设置进一步包含严格判据,该严格判据类似于所述主要判据,但具有低的阈值(S2,TD2)和不等式函数,分别和所述主要判据的阈值和不等式函数不同。所述控制器的运行a)参照所述严格判据检查探测到的温差ΔT和探测到的烟雾浓度S,从而提供一个火灾指数,指出哪一个严格判据在一个过去的预定时间范围内为哪一号的这种事件所满足,b)根据该火灾指数选定其中一个所述不同的运行模式,c)根据所选定的运行模式的特殊的方案修改由所述时间表规定的判定时间周期,和d)在这样修改过的判定时间周期的基础上确定火灾的确实存在。
8.如权利要求7中所述的火灾警报系统,其特征在于,其中当上述主要判据(i)和(iii)中的一个被满足时,修改判定时间周期的所述特殊的方案由下列步骤来限定a)从在最后一个在先时间周期内满足于其中一个主要判据的烟雾浓度(S)中取出多个样品;b)确定这些取样的烟雾浓度(S)超出通过主要判据(i)和(iii)中相应的一个所确定的烟雾浓度水平的量;c)将烟雾浓度(S)的超出量加在一起;和d)将这加在一起的量转换成判定时间周期。
9.如权利要求6中所述的火灾警报系统,其特征在于,其中所述阈值设置改变了依靠所选定的运作模式的至少一个第一烟雾阈值(S1)和不等式的函数。
10.如权利要求1中所述的火灾警报系统,其特征在于,其中所述不等式的函数为一个线性函数,其表述式为α·S+ΔT≥β,其中α和β为常数。
全文摘要
一种经改进的火灾警报系统,能可靠地探测由不同火源引发的火灾的存在。该火灾警报系统在一个预定时间间隔内探测烟雾浓度(S)以及温差(ΔT),并且有如下主要判据:(i)烟雾浓度(S)是否超过了一个烟雾阈值[如S>5%/m];(ii)温差(ΔT)是否超过了一个温差阈值[如ΔT≥18℃];和(iii)S和ΔT的组合是否满足一个基于一随S的增加ΔT减少的函数的不等式[如2S+ΔT≥12]。对探测出的烟雾浓度和温差参照主要判据进行检验,从而当上述任何一个主要判据被满足时提供一个说明火灾可能存在的火灾预警信号。
文档编号G08B17/06GK1383106SQ0113984
公开日2002年12月4日 申请日期2001年11月30日 优先权日2001年4月24日
发明者天野昌幸, 西川尚之, 和田刚嗣, 冈昭一, 渡边纯一 申请人:松下电工株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1