一种森林火灾检测用数据采集传输装置的制作方法

文档序号:15897532发布日期:2018-11-09 21:15阅读:267来源:国知局
一种森林火灾检测用数据采集传输装置的制作方法

本实用新型属于森林火灾检测技术领域,具体涉及一种森林火灾检测用数据采集传输装置。



背景技术:

近年来,基于计算机视觉的林火检测技术已开始取代传统的基于传感器的林火检测方法。图像分割是计算机视觉技术应用的第一步也是非常重要的一步。在林火检测领域中,许多学者已提出多种算法用于检测图像或视频序列中的火灾,如Rudz S等人在2013年第24期第7卷期刊《Measurement Science&Technology》上发表的论文《Investigation of a novel image segmentation method dedicated to forest fire appl ications》中提出的方法,蒋先刚等人在2017年第2期期刊《计算机工程与设计》的第494~499页上发表的论文《基于HOFHOG和RDF的火灾区域探测》中提出的方法,以及刘立等人在2016年第2期期刊《南华大学学报(自然科学版)》的第72~77页上发表的论文《基于YIQ颜色空间的火焰轮廓提取算法》中提出的方法;而且,近年来,随着大数据与人工智能的发展,以及并行计算技术的的提升,越来越多的领域都引入了计算机视觉技术。比如在火灾检测领域,就大有用计算机视觉替代传统传感器检测的趋势。但是,要想应用这些算法进行图像处理判断是否发生了森林火灾,就需要首先在森林中布设图像数据采集传输装置,进行森林火灾图像的采集,现有技术中这样的林火图像数据采集装置,只采集图像,图像的数据量大,冗余多,造成了数据处理速度慢、不能及时发现火灾等缺陷,而且,现有技术中的数据传输方式,有的采用射频无线通信,通信距离近,需要在森林中布设多个网络节点,还不能很好地满足实际使用的需求,因此,急需研制一种森林火灾检测用数据采集传输装置。



技术实现要素:

本实用新型所要解决的技术问题在于针对上述现有技术中的不足,提供一种森林火灾检测用数据采集传输装置,其电路结构简单,设计合理,实现方便,节约能源,且能够保证稳定可靠的供电,能够很好地应用于森林火灾监控中,实用性强,使用效果好,便于推广使用。

为解决上述技术问题,本实用新型采用的技术方案是:一种森林火灾检测用数据采集传输装置,其特征在于:包括布设在森林中多个不同位置处的图像采集传输装置和设置在监控中心的监控计算机,所述图像采集传输装置包括支架以及安装在支架顶部的红外摄像头、图像采集传输控制器和太阳能供电系统;所述太阳能供电系统包括太阳能光伏板、太阳能发电控制器和蓄电池,所述太阳能发电控制器包括太阳能发电微控制器模块和用于将蓄电池输出的电压转换为太阳能发电控制器中各用电模块所需电压的第一电压转换电路,所述太阳能发电微控制器模块的输入端接有太阳能光伏板电压检测电路和蓄电池电压检测电路,所述太阳能光伏板电压检测电路与太阳能光伏板的输出端连接,所述蓄电池电压检测电路与蓄电池的输出端连接,所述太阳能发电微控制器模块的输出端接有充放电控制电路,所述充放电控制电路接在太阳能光伏板与蓄电池之间;所述图像采集传输控制器包括图像采集传输微控制器模块和用于将蓄电池输出的电压转换为图像采集传输控制器中各用电模块所需电压的第二电压转换电路,以及与图像采集传输微控制器模块相接的数据存储器和用于与监控计算机无线通信的无线通信模块,所述红外摄像头与图像采集传输微控制器模块的输入端连接,所述图像采集传输微控制器模块的输入端还接有温度传感器、烟雾浓度传感器和用于定位的GPS定位模块,所述图像采集传输微控制器模块的输出端接有声光报警器。

上述的一种森林火灾检测用数据采集传输装置,其特征在于:所述太阳能发电微控制器模块包括ARM微控制器LPC2131。

上述的一种森林火灾检测用数据采集传输装置,其特征在于:所述蓄电池电压检测电路包括电阻R19、电阻R20和电阻R21,所述电阻R19和电阻R20串联后接在所述蓄电池的正极电压输出端和负极电压输出端之间,所述电阻R21的一端与所述电阻R19和电阻R20的连接端连接,所述电阻R21的另一端与所述ARM微控制器LPC2131的第15引脚连接;

所述充放电控制电路包括防反充二极管D19、升压电路、续流二极管D20、充电控制电路和放电控制电路,所述升压电路包括芯片LM25716-ADJ,所述芯片LM25716-ADJ的第1引脚通过串联的电阻R13和非极性电容C2接地,所述芯片LM25716-ADJ的第4引脚通过串联的电阻R14和电阻R15接地,所述芯片LM25716-ADJ的第2引脚与电阻R14和电阻R15的连极端连接,所述芯片LM25716-ADJ的第4引脚与第5引脚之间接有电感L1,所述芯片LM25716-ADJ的第5引脚与防反充二极管D19的阴极连接,所述防反充二极管D19的阳极与所述太阳能光伏板的正极电压输出端连接;所述充电控制电路包括MOSFET管Q1和型号为TLP521的光耦隔离芯片U2,所述光耦隔离芯片U2的第1引脚通过电阻R22与所述ARM微控制器LPC2131的第1引脚连接,所述光耦隔离芯片U2的第4引脚通过电阻R24与所述芯片LM25716-ADJ的第4引脚连接,且通过电阻R25与MOSFET管Q1的栅极连接,所述MOSFET管Q1的漏极与所述芯片LM25716-ADJ的第4引脚连接,所述MOSFET管Q1的源极与蓄电池的正极连接;所述放电控制电路包括MOSFET管Q2和型号为TLP521的光耦隔离芯片U3,所述光耦隔离芯片U3的第1引脚通过电阻R23与所述ARM微控制器LPC2131的第19引脚连接,所述光耦隔离芯片U3的第4引脚通过电阻R26与蓄电池的正极连接,且通过电阻R27与MOSFET管Q2的栅极连接,所述MOSFET管Q2的漏极与蓄电池的负极连接,所述MOSFET管Q2的源极与第一电压转换电路和第二电压转换电路的负极电压输入端连接,所述第一电压转换电路的正极电压输入端和第二电压转换电路的正极电压输入端均与蓄电池的正极连接;所述续流二极管D20的正极与蓄电池的负极连接,所述续流二极管D20的负极与蓄电池的正极连接;

所述太阳能光伏板电压检测电路包括电阻R16、电阻R17和电阻R18组成,所述电阻R16和电阻R17串联后接在所述芯片LM25716-ADJ的第4引脚与地之间,所述电阻R18的一端与所述电阻R16和电阻R17的连接端连接,所述电阻R18的另一端与所述ARM微控制器LPC2131的第13引脚连接。

上述的一种森林火灾检测用数据采集传输装置,其特征在于:所述图像采集传输微控制器模块包括DSP数字信号处理器TMS320F2812。

上述的一种森林火灾检测用数据采集传输装置,其特征在于:所述数据存储器包括卡槽SDCARD-M和12针插头P4,所述卡槽SDCARD-M的第1引脚、第2引脚、第3引脚、第5引脚、第7引脚和第8引脚依次对应与12针插头P4的第6引脚、第5引脚、第4引脚、第3引脚、第2引脚和第1引脚连接,所述12针插头P4的第1引脚、第2引脚、第3引脚、第4引脚、第5引脚和第6引脚分别通过电阻R13、电阻R14、电阻R15、电阻R16、电阻R17和电阻R18与第二电压转换电路的+3.3V电压输出端连接;所述卡槽SDCARD-M的第4引脚与第二电压转换电路的+3.3V电压输出端连接,且通过电容C18接地;所述卡槽SDCARD-M的第6引脚、第10引脚和第11引脚均接地;所述12针插头P4的第8引脚、第9引脚、第10引脚和第11引脚依次对应与DSP数字信号处理器TMS320F2812的第40引脚、第41引脚、第34引脚和第35引脚连接。

上述的一种森林火灾检测用数据采集传输装置,其特征在于:所述无线通信模块包括异步通信电路、与异步通信电路连接的CDMA模块、与CDMA模块连接的UIM卡接口电路和接在UIM卡接口电路上的UIM卡,所述异步通信电路包括芯片SN74AHC245、非极性电容C13、电阻R9和电阻R10,所述芯片SN74AHC245的第1引脚、第10引脚和第19引脚均接地,所述芯片SN74AHC245的第2引脚与所述DSP数字信号处理器TMS320F2812的第91引脚连接,所述芯片SN74AHC245的第5引脚与所述DSP数字信号处理器TMS320F2812的第92引脚连接,所述芯片SN74AHC245的第7引脚与所述DSP数字信号处理器TMS320F2812的第93引脚连接,所述芯片SN74AHC245的第14引脚通过电阻R10与所述DSP数字信号处理器TMS320F2812的第174引脚连接,所述芯片SN74AHC245的第17引脚通过电阻R9与所述DSP数字信号处理器TMS320F2812的第90引脚连接,所述芯片SN74AHC245的第20引脚与第二电压转换电路的+3.3V电压输出端连接且通过非极性电容C13接地;

所述CDMA模块包括芯片CEM800、非极性电容C18、非极性电容C19、非极性电容C20和非极性电容C21,所述芯片CEM800的第1引脚、第3引脚、第5引脚和第7引脚均与第二电压转换电路的+3.3V电压输出端连接,所述芯片CEM800的第2引脚、第4引脚、第6引脚、第8引脚、第50引脚和第56引脚均接地,所述芯片CEM800的第30引脚与所述芯片SN74AHC245的第18引脚连接,所述芯片CEM800的第32引脚与所述芯片SN74AHC245的第3引脚连接,所述芯片CEM800的第36引脚与所述芯片SN74AHC245的第6引脚连接,所述芯片CEM800的第38引脚与所述芯片SN74AHC245的第13引脚连接,所述非极性电容C18、非极性电容C19、非极性电容C20、非极性电容C21和非极性电容C76并联接在第二电压转换电路的+3.3V电压输出端与地之间;

所述UIM卡接口电路包括用于插入UIM卡的UIM卡槽UIM、电阻R11、电阻R20、电阻R21、电阻R22、非极性电容C14、非极性电容C23、非极性电容C24、非极性电容C25、稳压二极管D4、稳压二极管D5、稳压二极管D6和稳压二极管D7,所述UIM卡槽UIM的第2引脚与所述芯片CEM800的第46引脚和电阻R11的一端连接,所述UIM卡槽UIM的第3引脚与所述电阻R22的一端连接,所述电阻R11的另一端、电阻R22的另一端、非极性电容C23的一端和稳压二极管D5的负极均与所述芯片CEM800的第44引脚连接,所述UIM卡槽UIM的第4引脚、非极性电容C14的一端和稳压二极管D4的负极均与所述芯片CEM800的第46引脚连接,所述UIM卡槽UIM的第5引脚与所述电阻R20的一端连接,所述电阻R20的另一端、非极性电容C24的一端和稳压二极管D6的负极均与所述芯片CEM800的第42引脚连接,所述UIM卡槽UIM的第6引脚与所述电阻R21的一端连接,所述电阻R21的另一端、非极性电容C25的一端和稳压二极管D7的负极均与所述芯片CEM800的第48引脚连接,所述UIM卡槽UIM的第1引脚、非极性电容C14的另一端、稳压二极管D4的正极、非极性电容C23的另一端、稳压二极管D5的正极、非极性电容C24的另一端、稳压二极管D6的正极、非极性电容C25的另一端和稳压二极管D7的正极均接地。

上述的一种森林火灾检测用数据采集传输装置,其特征在于:所述GPS定位模块为BD/GPS双模接收机模块ATGM332D,所述BD/GPS双模接收机模块ATGM332D的串口接收引脚RXD与所述DSP数字信号处理器TMS320F2812的第157引脚连接,所述BD/GPS双模接收机模块ATGM332D的串口发送引脚TXD与所述DSP数字信号处理器TMS320F2812的第155引脚连接,所述BD/GPS双模接收机模块ATGM332D的时间脉冲信号引脚PPS与所述DSP数字信号处理器TMS320F2812的第98引脚连接。

本实用新型与现有技术相比具有以下优点:

1、本实用新型采用了模块化的设计,电路结构简单,设计合理,实现方便。

2、本实用新型通过通过太阳能供电,节约能源;通过太阳能光伏板电压检测电路、充放电控制电路和蓄电池电压检测电路的合理设计,能够延长蓄电池的使用寿命,且能够保证稳定可靠的供电。

3、本实用新型检测的数据能够通过无线通信模块传输给远程监控计算机,能够供远程监控计算机进行分析处理,远程监控是否有火灾发生,实用性强,使用效果好,便于推广使用。

综上所述,本实用新型的电路结构简单,设计合理,实现方便,节约能源,且能够保证稳定可靠的供电,能够很好地应用于森林火灾监控中,实用性强,使用效果好,便于推广使用。

下面通过附图和实施例,对本实用新型的技术方案做进一步的详细描述。

附图说明

图1为本实用新型的结构示意图。

图2为本实用新型图像采集传输装置和太阳能供电系统的电路连接框图。

图3为本实用新型太阳能发电微控制器模块的电路原理图。

图4为本实用新型太阳能光伏板、太阳能光伏板电压检测电路、充放电控制电路、蓄电池电压检测电路和蓄电池的电路连接图。

图5为本实用新型图像采集传输微控制器模块的电路原理图。

图6为本实用新型数据存储器的电路原理图。

图7为本实用新型异步通信电路的电路原理图。

图8为本实用新型CDMA模块的电路原理图。

图9为本实用新型UIM卡接口电路的电路原理图。

图10为本发明GPS定位模块的电路原理图。

具体实施方式

如图1所示,本实用新型的一种森林火灾检测用数据采集传输装置,包括布设在森林中多个不同位置处的图像采集传输装置1和设置在监控中心的监控计算机2,所述图像采集传输装置1包括支架3以及安装在支架3顶部的红外摄像头4、图像采集传输控制器5和太阳能供电系统;结合图2,所述太阳能供电系统包括太阳能光伏板6-1、太阳能发电控制器6-2和蓄电池6-3,所述太阳能发电控制器6-2包括太阳能发电微控制器模块6-21和用于将蓄电池6-3输出的电压转换为太阳能发电控制器6-2中各用电模块所需电压的第一电压转换电路6-25,所述太阳能发电微控制器模块6-21的输入端接有太阳能光伏板电压检测电路6-22和蓄电池电压检测电路6-23,所述太阳能光伏板电压检测电路6-22与太阳能光伏板6-1的输出端连接,所述蓄电池电压检测电路6-23与蓄电池6-3的输出端连接,所述太阳能发电微控制器模块6-21的输出端接有充放电控制电路6-24,所述充放电控制电路6-24接在太阳能光伏板6-1与蓄电池6-3之间;所述图像采集传输控制器5包括图像采集传输微控制器模块5-1和用于将蓄电池6-3输出的电压转换为图像采集传输控制器5中各用电模块所需电压的第二电压转换电路5-2,以及与图像采集传输微控制器模块5-1相接的数据存储器5-8和用于与监控计算机2无线通信的无线通信模块5-3,所述红外摄像头4与图像采集传输微控制器模块5-1的输入端连接,所述图像采集传输微控制器模块5-1的输入端还接有温度传感器5-4、烟雾浓度传感器5-5和用于定位的GPS定位模块5-6,所述图像采集传输微控制器模块5-1的输出端接有声光报警器5-7。

本实施例中,如图3所示,所述太阳能发电微控制器模块6-21包括ARM微控制器LPC2131。

本实施例中,如图4所示,所述蓄电池电压检测电路6-23包括电阻R19、电阻R20和电阻R21,所述电阻R19和电阻R20串联后接在所述蓄电池6-3的正极电压输出端和负极电压输出端之间,所述电阻R21的一端与所述电阻R19和电阻R20的连接端连接,所述电阻R21的另一端与所述ARM微控制器LPC2131的第15引脚连接;

本实施例中,如图4所示,所述充放电控制电路6-24包括防反充二极管D19、升压电路、续流二极管D20、充电控制电路和放电控制电路,所述升压电路包括芯片LM25716-ADJ,所述芯片LM25716-ADJ的第1引脚通过串联的电阻R13和非极性电容C2接地,所述芯片LM25716-ADJ的第4引脚通过串联的电阻R14和电阻R15接地,所述芯片LM25716-ADJ的第2引脚与电阻R14和电阻R15的连极端连接,所述芯片LM25716-ADJ的第4引脚与第5引脚之间接有电感L1,所述芯片LM25716-ADJ的第5引脚与防反充二极管D19的阴极连接,所述防反充二极管D19的阳极与所述太阳能光伏板6-1的正极电压输出端连接;所述充电控制电路包括MOSFET管Q1和型号为TLP521的光耦隔离芯片U2,所述光耦隔离芯片U2的第1引脚通过电阻R22与所述ARM微控制器LPC2131的第1引脚连接,所述光耦隔离芯片U2的第4引脚通过电阻R24与所述芯片LM25716-ADJ的第4引脚连接,且通过电阻R25与MOSFET管Q1的栅极连接,所述MOSFET管Q1的漏极与所述芯片LM25716-ADJ的第4引脚连接,所述MOSFET管Q1的源极与蓄电池6-3的正极连接;所述放电控制电路包括MOSFET管Q2和型号为TLP521的光耦隔离芯片U3,所述光耦隔离芯片U3的第1引脚通过电阻R23与所述ARM微控制器LPC2131的第19引脚连接,所述光耦隔离芯片U3的第4引脚通过电阻R26与蓄电池6-3的正极连接,且通过电阻R27与MOSFET管Q2的栅极连接,所述MOSFET管Q2的漏极与蓄电池6-3的负极连接,所述MOSFET管Q2的漏极与蓄电池6-3的负极连接,所述MOSFET管Q2的源极与第一电压转换电路6-25和第二电压转换电路5-2的负极电压输入端连接,所述第一电压转换电路6-25的正极电压输入端和第二电压转换电路5-2的正极电压输入端均与蓄电池6-3的正极连接;所述续流二极管D20的正极与蓄电池6-3的负极连接,所述续流二极管D20的负极与蓄电池6-3的正极连接;

本实施例中,如图4所示,所述太阳能光伏板电压检测电路6-22包括电阻R16、电阻R17和电阻R18组成,所述电阻R16和电阻R17串联后接在所述芯片LM25716-ADJ的第4引脚与地之间,所述电阻R18的一端与所述电阻R16和电阻R17的连接端连接,所述电阻R18的另一端与所述ARM微控制器LPC2131的第13引脚连接。

本实施例中,如图5所示,所述图像采集传输微控制器模块5-1包括DSP数字信号处理器TMS320F2812。

本实施例中,如图6所示,所述数据存储器5-8包括卡槽SDCARD-M和12针插头P4,所述卡槽SDCARD-M的第1引脚、第2引脚、第3引脚、第5引脚、第7引脚和第8引脚依次对应与12针插头P4的第6引脚、第5引脚、第4引脚、第3引脚、第2引脚和第1引脚连接,所述12针插头P4的第1引脚、第2引脚、第3引脚、第4引脚、第5引脚和第6引脚分别通过电阻R13、电阻R14、电阻R15、电阻R16、电阻R17和电阻R18与第二电压转换电路5-2的+3.3V电压输出端连接;所述卡槽SDCARD-M的第4引脚与第二电压转换电路5-2的+3.3V电压输出端连接,且通过电容C18接地;所述卡槽SDCARD-M的第6引脚、第10引脚和第11引脚均接地;所述12针插头P4的第8引脚、第9引脚、第10引脚和第11引脚依次对应与DSP数字信号处理器TMS320F2812的第40引脚、第41引脚、第34引脚和第35引脚连接。

本实施例中,所述无线通信模块5-3包括异步通信电路、与异步通信电路连接的CDMA模块、与CDMA模块连接的UIM卡接口电路和接在UIM卡接口电路上的UIM卡,如图7所示,所述异步通信电路包括芯片SN74AHC245、非极性电容C13、电阻R9和电阻R10,所述芯片SN74AHC245的第1引脚、第10引脚和第19引脚均接地,所述芯片SN74AHC245的第2引脚与所述DSP数字信号处理器TMS320F2812的第91引脚连接,所述芯片SN74AHC245的第5引脚与所述DSP数字信号处理器TMS320F2812的第92引脚连接,所述芯片SN74AHC245的第7引脚与所述DSP数字信号处理器TMS320F2812的第93引脚连接,所述芯片SN74AHC245的第14引脚通过电阻R10与所述DSP数字信号处理器TMS320F2812的第174引脚连接,所述芯片SN74AHC245的第17引脚通过电阻R9与所述DSP数字信号处理器TMS320F2812的第90引脚连接,所述芯片SN74AHC245的第20引脚与第二电压转换电路5-2的+3.3V电压输出端连接且通过非极性电容C13接地;

如图8所示,所述CDMA模块包括芯片CEM800、非极性电容C18、非极性电容C19、非极性电容C20和非极性电容C21,所述芯片CEM800的第1引脚、第3引脚、第5引脚和第7引脚均与第二电压转换电路5-2的+3.3V电压输出端连接,所述芯片CEM800的第2引脚、第4引脚、第6引脚、第8引脚、第50引脚和第56引脚均接地,所述芯片CEM800的第30引脚与所述芯片SN74AHC245的第18引脚连接,所述芯片CEM800的第32引脚与所述芯片SN74AHC245的第3引脚连接,所述芯片CEM800的第36引脚与所述芯片SN74AHC245的第6引脚连接,所述芯片CEM800的第38引脚与所述芯片SN74AHC245的第13引脚连接,所述非极性电容C18、非极性电容C19、非极性电容C20、非极性电容C21和非极性电容C76并联接在第二电压转换电路5-2的+3.3V电压输出端与地之间;

如图9所示,所述UIM卡接口电路包括用于插入UIM卡的UIM卡槽UIM、电阻R11、电阻R20、电阻R21、电阻R22、非极性电容C14、非极性电容C23、非极性电容C24、非极性电容C25、稳压二极管D4、稳压二极管D5、稳压二极管D6和稳压二极管D7,所述UIM卡槽UIM的第2引脚与所述芯片CEM800的第46引脚和电阻R11的一端连接,所述UIM卡槽UIM的第3引脚与所述电阻R22的一端连接,所述电阻R11的另一端、电阻R22的另一端、非极性电容C23的一端和稳压二极管D5的负极均与所述芯片CEM800的第44引脚连接,所述UIM卡槽UIM的第4引脚、非极性电容C14的一端和稳压二极管D4的负极均与所述芯片CEM800的第46引脚连接,所述UIM卡槽UIM的第5引脚与所述电阻R20的一端连接,所述电阻R20的另一端、非极性电容C24的一端和稳压二极管D6的负极均与所述芯片CEM800的第42引脚连接,所述UIM卡槽UIM的第6引脚与所述电阻R21的一端连接,所述电阻R21的另一端、非极性电容C25的一端和稳压二极管D7的负极均与所述芯片CEM800的第48引脚连接,所述UIM卡槽UIM的第1引脚、非极性电容C14的另一端、稳压二极管D4的正极、非极性电容C23的另一端、稳压二极管D5的正极、非极性电容C24的另一端、稳压二极管D6的正极、非极性电容C25的另一端和稳压二极管D7的正极均接地。

本实施例中,如图10所示,所述GPS定位模块5-6为BD/GPS双模接收机模块ATGM332D,所述BD/GPS双模接收机模块ATGM332D的串口接收引脚RXD与所述DSP数字信号处理器TMS320F2812的第157引脚连接,所述BD/GPS双模接收机模块ATGM332D的串口发送引脚TXD与所述DSP数字信号处理器TMS320F2812的第155引脚连接,所述BD/GPS双模接收机模块ATGM332D的时间脉冲信号引脚PPS与所述DSP数字信号处理器TMS320F2812的第98引脚连接。

具体实施时,所述红外摄像头4为带有夜视功能的红外摄像头,所述红外摄像头4的信号输出端与DSP数字信号处理器TMS320F2812的I/O输入端口连接,所述温度传感器5-4为数字式温度传感器DS18B20,所述数字式温度传感器DS18B20的信号输出端与DSP数字信号处理器TMS320F2812的I/O输入端口连接,所述烟雾浓度传感器5-5为MQ-2烟雾浓度传感器,所述MQ-2烟雾浓度传感器的模拟信号输出端口与DSP数字信号处理器TMS320F2812的模拟信号输入端口(即内部A/D转换器的信号输入端口)连接。

本实用新型使用时,温度传感器5-4对其所处环境的温度进行实时检测并将检测到的信号输出给图像采集传输微控制器模块5-1,烟雾浓度传感器5-5对其所处环境的烟雾浓度进行实时检测,并将所检测到的信号输出给图像采集传输微控制器模块5-1,图像采集传输微控制器模块5-1将其接收到的温度检测数据与预先设定的温度阈值数据相比对,并将其接收到的烟雾浓度检测数据与预先设定的烟雾浓度阈值数据相比对,当温度检测数据大于温度阈值数据且烟雾浓度检测数据大于烟雾浓度阈值数据时,判断为可能发生了火灾,此时,图像采集传输微控制器模块5-1输出启动控制信号给红外摄像头4和GPS定位模块5-6,红外摄像头4接收到启动控制信号后,开始拍摄其所处环境中的森林火灾图像并将拍摄到的图像输出给图像采集传输微控制器模块5-1,GPS定位模块5-6进行其所处位置定位并将定位的位置信号输出给图像采集传输微控制器模块5-1,图像采集传输微控制器模块5-1将其接收到的森林火灾图像和位置信号通过无线通信模块5-3打包发送给远程监控计算机,为实现森林火灾的远程监控奠定了基础。

以上所述,仅是本实用新型的较佳实施例,并非对本实用新型作任何限制,凡是根据本实用新型技术实质对以上实施例所作的任何简单修改、变更以及等效结构变化,均仍属于本实用新型技术方案的保护范围内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1