微调光学储存装置写入策略参数的方法及其系统的制作方法

文档序号:6760109阅读:163来源:国知局
专利名称:微调光学储存装置写入策略参数的方法及其系统的制作方法
技术领域
本发明是关于光学储存装置的写入策略微调(writes trategy tuning),尤指借由使用数据对时钟边缘偏差(data-to-clock edge deviation)来微调(tune)写入策略参数的方法及系统。
背景技术
由于多媒体应用持续发展,储存大量数字数据的需求遂快速地成长。于是,储存容量高且体积小巧的光学储存媒体,例如光盘片(Compact Disc,CD)或数字多用途光盘片(Digital Versatile Disc,DVD),就非常流行,且光学储存装置,例如光驱(CD drive)或数字多用途光驱(DVD drive),已成为个人计算机的标准配备,用来进行上述的多媒体应用。
以上述的光驱为例,当该光驱被控制以将数据写入一可记录式光盘片(CD-Recordable disc,CD-R disc)时,该光驱中的一激光二极管的写入功率(writing power)通常被设为一特定值,而对应于该数据的多个写入脉冲(write pulse)则被用于在该可记录式光盘片的沟槽(groove)上将该数据记录成多个凹洞(pit)与平面(land)。通常该写入功率的该特定值可从一最佳化功率校正(optimal power calibration,OPC)程序来取得。另一方面,透过一写入策略微调(write strategy tuning)程序,亦称为一记录策略微调(recording strategy tuning)程序,改变用来控制该多个写入脉冲的宽度的写入策略参数,可增加该可记录式光盘片上所形成的凹洞与平面的长度的精确度。请参考可记录式光盘片规格的相关文件,例如橘皮书第一部(Orange Book Part I),以取得更多信息。
依据相关技术,一特定装置,例如一示波器,可被使用于该写入策略微调程序。依据一预先的试误性写入程序之后、于该示波器上所显示的多个重建波形(reproduced waveform)的眼状图(eye pattern),用来控制该多个写入脉冲的宽度的新的一组写入策略参数通常是由一工程师或一研究员基于经验来决定。然而,使用这个方法会耗费该工程师或研究员许多时间,是因为同样的程序必须针对各种可应用的媒体以及不同的记录速度而被重复地进行;在这被重复地进行的程序中至少具有包括写入测试数据、检视该示波器上所显示的多个重建波形的眼状图、以及借着经验依据该眼状图来决定新的一组写入策略参数。上述的写入策略微调程序相当耗时,这是由于借由检视眼状图来决定这些写入策略参数并非自动的运作。另外,由于借着经验依据该眼状图来决定新的一组写入策略参数并不是定量的,因此上述的写入策略微调程序整体而言是不明确的(indefinite)。在某些状况下,含糊不清的眼状图甚至会干扰该写入策略微调程序或使该写入策略微调程序失效。
一特定仪器,例如一时间间距分析仪(time interval analyzer,TIA)或一抖动计量器(jitter meter),可能有助于取得用来决定新的一组写入策略参数的信息。然而,还是有类似的例行工作必须进行,且若该时间间距分析仪或该抖动计量器简单地被耦接以供量测之用而不设置额外的控制系统,则手动微调程序所造成的相同缺点仍然存在。另外,自该特定仪器所取得的信息的意义通常是隐含的(implicit),因此,即使是经验丰富的工程师或研究员也要耗费许多时间才能据以决定新的一组写入策略参数。

发明内容
本发明的目的之一在于提供用来微调(tune)一光学储存装置的多个写入策略参数(writes trategy parameter)的方法及系统。
本发明的一实施例揭露一种用来微调写入策略参数的方法。该方法包含有侦测多个长度,每一长度对应于一光学储存装置所存取(access)的一光学储存媒体上的一凹洞(pit)或一平面(land);以及进行对应于多个数据集类型(data set type)的计算,以及产生分别对应于该多个数据集类型的多个数据对时钟边缘偏差(data-to-clock edge deviation)。每一数据集类型是对应于至少一特定目标(target)凹洞长度与至少一特定目标平面长度的组合,或至少一特定目标平面长度与至少一特定目标凹洞长度的组合。这些该多个数据对时钟边缘偏差分别被使用于微调分别对应于该些该多个数据集类型的写入策略参数。
本发明的一实施例揭露一种用来微调一光学储存装置的写入策略参数的系统。该系统包含有一侦测器、一计算模块、与一控制器,其中该计算模块耦接至该侦测器,而该控制器耦接至该计算模块与该侦测器。该侦测器量测多个长度,每一长度对应于该光学储存装置所存取的一光学储存媒体上的一凹洞或一平面。该计算模块进行对应于多个各种数据集类型的计算,以及产生分别对应于该多个这些数据集类型的多个数据对时钟边缘偏差,其中每一数据集类型对应于至少一特定目标凹洞长度与至少一特定目标平面长度的组合,或至少一特定目标平面长度与至少一特定目标凹洞长度的组合。该控制器使用该多个这些数据对时钟边缘偏差,而该多个数据对时钟边缘偏差是用来分别微调分别对应于该些该多个数据集类型的写入策略参数。


图1为依据本发明一实施例、用来微调(tune)一光学储存装置的多个写入策略参数(write strategy parameter)的系统的示意图。
图2为依据本发明一实施例、借由使用多个数据对时钟边缘偏差(data-to-clock edge deviation)来进行长度补偿的示意图。
图3为依据本发明一实施例、用来微调多个写入策略参数的方法的流程图。
图4为依据本发明一实施例、对应于多个目标长度组合(target lengthcombination)的多个数据集类型(data set type)的列表。
图5为依据本发明一实施例、用来微调一光学储存装置的多个写入策略参数的系统的示意图。
图6为依据本发明一实施例、用来微调一光学储存装置的多个写入策略参数的系统的示意图。
图7为于一重建信号(reproduced signal)上、相对于一个八对十四调变数据时钟(EFM data clock)的多个取样点的示意图,其中依据本发明一实施例,一特定取样点的值与一预定值之间的差值可被用来为代表一数据对时钟边缘偏差的一指针。
图8为图6所示的实施例的一变化例的示意图。
符号说明100,200,300,400 光学储存装置100C,200C,300C,400C 系统102 光学储存媒体110 光学读取头112 波形均衡器114 分切器120,320锁相回路130,330八对十四调变长度侦测器140,340计算模块142,342型样依附分类器144,344数据对时钟边缘偏差计算器150,350写入脉冲控制器160 调变器162 写入脉冲产生器164 发射源驱动器
220 振荡器314 模拟数字转换器416 内插器111,113,115,131,143,145,151,161,163,165,315,331,343,345,351信号CLK,CLK2,CLK3,CLK4时钟d,e,D,E,Do,Eo 时间点d1,d2 数据对时钟边缘长度d3 差值d4 数据对时钟边缘偏差Ttopr,Tlast 写入策略参数910 方法910S,910E,912~924 步骤具体实施方式
本发明提供用来微调(tune)一光学储存装置的多个写入策略参数(writestrategy parameter)的系统。依据一第一观点,这些系统中之一可以为用来微调该多个写入策略参数的一电路,其中该电路是置于该光学储存装置中。依据一第二观点,这些系统的另一些实施例也可以在实质上(substantially)为该光学储存装置本身。为了简明起见,在以下的说明中采用将该系统实施于一电路中该第一观点。然而,该第二观点其它实施方式亦可应用于这些详细的实施例。
请参考图1,图1为依据本发明一的第一实施例、用来微调(tune)一光学储存装置100,的多个写入策略参数(write strategy parameter)的系统100C的示意图,其中系统100C为置于光学储存装置100中的一电路,而光学储存装置100则对存取(access)一光学储存媒体102进行数据的存取(access)。请留意,为了简明起见,本实施例采用一可记录式光盘片(CD-Recordable disc,CD-R disc)作为光学储存媒体102,并以及采用一光驱(CD drive)作为光学储存装置100来进行说明。熟悉此项技艺者应可理解,其它种类的光学储存媒体,例如数字多用途光盘片(Digital VersatileDisc,DVD)中不论是DVD-R规格、DVD+R规格、或DVD-RAM规格的数字多用途光盘片,以及其对应的光学储存装置,例如数字多用途光驱(DVD drive),亦可应用于本发明达到类似功效的其它实施例。
如图1所示,于光学储存装置100的一读取模式中,光学储存装置100的一光学读取头(optical pickup)110自光学储存媒体102读取数据,以产生一原始射频信号(raw radio frequency signa1,raw RF signa1)111。光学储存装置100的一波形均衡器(waveform equalizer)112等化原始射频信号111以产生一重建信号(reproduced signa1),该重建信号于本实施例中为射频信号113。另外,光学储存装置100的一分切器(slicer)114将剖析(slice)射频信号113分切(slice)以产生一分切信号115。上述的光学读取头110、波形均衡器112、与分切器114的运作原理均为熟悉此项技艺者所知悉,故不在此赘述其细节。
于图1所示的光学储存装置100中,一调变器160、一写入脉冲(writepulse)产生器162、与一发射源驱动器(radiation source driver)164将会依据写入策略参数合作以驱动光学读取头110,而上述是依据该多个写入策略参数来进行;依据分切信号115,系统100C透过一控制信号151来微调所述写入策略参数。调变器160耦接至光学储存装置100的一编码器(未显示),且用来调变该编码器所输出的编码数据以产生一调变信号161,而调变信号161所则携带有载的信息为八对十四调变(eight-to-fourteen modulation,EFM)的数据信息。写入脉冲产生器162依据上述的写入策略参数,来产生对应于调变信号161所携带载的八对十四调变信息的多个写入脉冲,并输出所述写入脉冲,而所述写入脉冲由一写入脉冲信号163所携带。另外,发射源驱动器164依据写入脉冲信号163来产生一驱动信号165以驱动光学读取头110。调变器160、写入脉冲产生器162、与发射源驱动器164的运作原理均为熟悉此项技艺者所知悉,故不在此赘述其细节。
依据本实施例,系统1 00C包含有一锁相回路(phase-locked loop,PLL)120;一侦测器,例如图1所示的八对十四调变长度侦测器130;一计算模块140;以及一控制器,例如图1所示的写入脉冲控制器150。计算模块140包含有一型样依附分类器(pattern dependency classifier)142与一数据对时钟边缘偏差计算器(data-to-clock edge deviation calculator)144。锁相回路120依据分切信号115来产生一个八对十四调变数据时钟(EFM dataclock)CLK,此运作是借由锁定分切信号115的信道位率(channel bit rate),即1/T,其中八对十四调变数据时钟CLK的周期通常被视为1T。八对十四调变长度侦测器130依据八对十四调变数据时钟CLK来取得分切信号115所携带的八对十四调变信息,并侦测多个长度,其中每一长度对应于记录在光学储存媒体102上的一凹洞(pit)或一平面(land)。典型的分切信号115为一方波,其多个上升边缘(rising edge)与多个下降边缘(falling edge)之间的多个间距(interval)以及多个下降边缘与多个上升边缘之间的多个间距均可有各种不同长度。于本实施例中,八对十四调变长度侦测器130量测分切信号115的多个上升边缘与多个下降边缘之间的多个间距及/或分切信号115的多个下降边缘与多个上升边缘之间的多个间距,来作为上述的该多个长度,其中每一间距对应于一凹洞或一平面。于是,所述长度包含有对应于多个凹洞的多个凹洞长度P,以及对应于多个平面的多个平面长度L。多个每个凹洞长度P的每一个代表沿着光学储存媒体102上的一沟槽(groove)所记录的一凹洞,而每个平面长度L则代表沿着该沟槽所记录的一平面。请留意,本发明的另一实施例的分切信号115可携带有加强型八对十四调变(EFMplus,EFM+)信息(例如应用DVD-R规格的实施例)或其它兼容于八对十四调变/加强型八对十四调变的变化规格的信息。
于依据该第一实施例中,于该可记录式光盘片的一理想状况下,得自分切信号115的这些凹洞长度与平面长度均为时钟周期T的倍数,且于该可记录式光盘片的一理想状况下,这些凹洞长度与平面长度的分布范围是从3T至11T。也就是说,一凹洞的一长度P或一平面的一长度L可为3T、4T、…、或11T。所以,甚为合理的是,用来量测这些凹洞的长度与这些平面的长度的一参考信号(例如上述的八对十四调变数据时钟CLK)具有小于或等于T的周期。依据本实施例,输入至八对十四调变长度侦测器130的该参考信号为八对十四调变数据时钟CLK,所以该参考信号的周期为T。于该可记录式光盘片的一实际状况下,八对十四调变长度侦测器130的输出信号131所携带的这些长度L与P通常并非T的确切倍数,即通常不是T的整数倍。计算模块140可进行分别对应于各个数据集类型(data set type)作的计算,并以及产生分别对应于该多个这些数据集类型的多个数据对时钟边缘偏差(data-to-clock edge deviation),其中该多个这些数据对时钟边缘偏差由数据对时钟边缘偏差计算器144的一输出信号145所携带。每一数据集类型对应于至少一特定目标(target)凹洞长度(例如3T、4T、…、11T)与至少一特定目标平面长度(例如3T、4T、…、11T)的组合,或至少一特定目标平面长度与至少一特定目标凹洞长度的组合。
型样依附分类器142将多个数据集(data set)分类(classify)进该多个各数据集类型。于本实施例中,每一数据集,即(P,L)或(L,P),包含有两长度,其中一数据集(P,L)意指对应于一凹洞的一长度与以及对应于一其相邻的(adjacent)平面的另一长度,而一数据集(L,P)意指对应于一平面的一长度与以及对应于其一相邻的凹洞的另一长度。在此,如(PnT,LmT)或(LnT,PmT)的标示法用来表示上述的多个数据集类型,其中nT或mT以时钟周期T为单位来指出表示长度;于本实施例中,n=3、4、…、或11,且m=3、4、…、或11。每一个数据集类型(LnT,PmT),例如n=n0且m=m0的一数据集类型(Ln0*T,Pm0*T), 被使用于将分类多个数据集(L,P)分类,以例如将多个数据集(L,P)当中、对应于具有n0*T的目标平面长度为n0*T的一平面、且以及紧随该平面之后、对应于具有m0*T的目标凹洞长度为m0*T的凹洞且紧随该平面之后相邻的一凹洞分类出来。相仿地,每一个数据集类型(PnT,LmT),例如n=n0且m=m0的一数据集类型(Pn0*T,Lm0*T),被使用于分类多个数据集(P,L),以将多个数据集(P,L)当中、对应于具有n0*T的目标凹洞长度为n0*T的一凹洞、且紧随该凹洞之后、以及对应于具有m0*T的目标平面长度为m0*T且紧随该凹洞之后相邻的一平面分类出来。需要留意的是,多个数据集类型(LnT,PmT)中的每一个,例如数据集类型(Ln0*T,Pm0*T),对应于一特定目标平面长度n0*T与一特定目标凹洞长度m0*T的组合(n0*T,m0*T),而多个数据集类型(PnT,LmT)中的每一个,例如数据集类型(Pn0*T,Lm0*T),对应于一特定目标凹洞长度n0*T与一特定目标平面长度m0*T的组合(n0*T,m0*T)。由于n与m各有九个可能的值(3到11),所以对多个数据集类型(LnT,PmT)而言有(9*9)个组合,而对多个数据集类型(PnT,LmT)而言也有(9*9)个组合,因此且数据集类型的总数为(9*9*2)=162。
另外,若多个数据集(L,P)中的长度L与P满足下列条件,则型样依附分类器142可将这些数据集(L,P)分类进数据集类型(Ln0*T,Pm0*T)(n0-0.5)*T≤L≤(n0+0.5)*T且(m0-0.5)*T≤P≤(m0+0.5)*T;相仿地,若多个数据集(P,L)中的长度P与L满足下列条件,则型样依附分类器142可将这些数据集(P,L)分类进数据集类型(Pn0*T,Lm0*T)(n0-0.5)*T≤P≤(n0+0.5)*T且(m0-0.5)*T≤L≤(m0+0.5)*T。
数据对时钟边缘偏差计算器144可如下列说明来计算分别对应于多个数据集类型(LnT,PmT)与(PnT,LmT)的该多个数据对时钟边缘偏差。数据对时钟边缘偏差计算器144计算多个数据对时钟边缘长度(data-to-clock edgelength),其中每一数据对时钟边缘长度为上述的参考信号(于本实施例中即八对十四调变数据时钟CLK)的一上升/下降边缘以及分切信号115的一转变边缘(transition edge)之间的间距。此外,数据对时钟边缘偏差计算器144于是计算多个差值,以产生分别对应于多个各告个数据集类型(LnT,PmT)与(PnT,LmT)的该多个数据对时钟边缘偏差。上述的差值中的每一差值为一数据对时钟边缘长度与一目标数据对时钟边缘长度之间的差值,其中该目标数据对时钟边缘长度为对应于一特定数据集类型(Ln0*T,Pm0*T)或(Pn0*T,Lm0*T)的一预定值。
接下来以图2所示的情况为例来进一步说明。图2为依据该第一实施例、借由使用多个数据对时钟边缘偏差来进行长度补偿的示意图,其中绘示有均对应于一目标长度P4T(即4T凹洞的目标长度为4T)的两个凹洞A与B、以及对应于一目标长度L5T(即5T平面的目标长度为5T)的一平面。如图2所示,Ttopr与Tlast分别表示用来控制多个凹洞的开始位置与结束位置的多个写入策略参数。依据本实施例,这些写入策略参数Ttopr(n,m)分别代表用来控制对应于多个数据集类型(LnT,PmT)的凹洞的开始位置的多个写入策略参数,其中n与m均为变量(如先前范例所述,n与m可为3,4,…,11);相仿地,这些写入策略参数Tlast(n,m)分别代表用来控制对应于多个数据集类型(PnT,LmT)的凹洞的结束位置的多个写入策略参数,其中n与m均为变量。在此,凹洞A与紧随凹洞A的后相邻的平面(即凹洞A与B之间的5T平面)对应于一数据集类型(P4T,L5T),而这个5T平面与凹洞B对应于一数据集类型(L5T,P4T)。另外,对应于凹洞A的结束位置的写入策略参数Tlast被称为Tlast(4,5),而对应于凹洞B的开始位置的写入策略参数Ttopr被称为Ttopr(5,4)。
数据对时钟边缘偏差计算器144计算一数据对时钟边缘长度d1。于本实施例中,数据对时钟边缘长度d1为分切信号115的一下降边缘的时间点D(即对应于凹洞A的结束位置的时间点)、以及于八对十四调变数据时钟CLK中一随后的上升边缘(例如时间点d所指之处)之间的间距。请留意,时间点D实质上为射频信号113的值跨越(cross)某一预定值(例如对应于分切器114的分切位准的值)时的同一时间点。数据对时钟边缘偏差计算器144借由侦测分切信号115的位准由高至低的转变来侦测时间点D。同样的方法可以被应用于计算每一个对应于数据集类型(P4T,L5T)的数据对时钟边缘长度的每一个。此外,数据对时钟边缘偏差计算器144计算多个差值以产生对应于该多个数据集类型的多个数据对时钟边缘偏差。于某些实施例中,数据对时钟边缘偏差计算器144借由收搜集多个进行对应于一特定数据集类型的该多个差值、并进行的统计分析,来产生该特定数据集类型的数据对时钟边缘偏差。此统计分析可为对该多个这些差值进行平均运算,或为找出该多个这些差值中的众数(most frequent value)。上述的多个差值中的每一个可以为一数据对时钟边缘长度与一目标数据对时钟边缘长度(于本实施例中,例如0.5T)之间的差值。对应于数据集类型(P4T,L5T)的目标数据对时钟边缘长度为0.5T,是因为对应于凹洞A的结束位置的时间点在理想状况下应该是时间点Do。
相仿地,数据对时钟边缘偏差计算器144计算一数据对时钟边缘长度d2。于本实施例中,数据对时钟边缘长度d2为分切信号115的一上升边缘的时间点E(即对应于凹洞B的开始位置的时间点)以及于八对十四调变数据时钟CLK中一随后的上升边缘(例如时间点e所指之处)之间的间距。请留意,时间点E实质上为射频信号113的值跨越某一预定值(例如对应于分切器114的分切位准的值)时的同一时间点。数据对时钟边缘偏差计算器144借由侦测分切信号115的位准由低至高的转变来侦测时间点E。同样的方法可以被应用于计算对应于数据集类型(L5T,P4T)的数据对时钟边缘长度。此外,数据对时钟边缘偏差计算器144计算多个差值以产生对应于该多个各数据集类型的多个数据对时钟边缘偏差,其中上述的多个差值中的每一个为一数据对时钟边缘长度与一目标数据对时钟边缘长度之间的差值。于本实施例中,对应于数据集类型(L5T,P4T)的目标数据对时钟边缘长度被决定为0.5T,是因为对应于凹洞B的开始位置的时间点在理想状况下应该是时间点Eo。
需要留意的是,若有需要,型样依附分类器142所产生的分类信息可透过数据对时钟边缘偏差计算器144被传送至写入脉冲控制器150,这是由于自数据对时钟边缘偏差计算器144至写入脉冲控制器150的传输是数字的。相仿地,若有需要,八对十四调变长度侦测器130所产生的侦测结果可透过型样依附分类器142被传送至数据对时钟边缘偏差计算器144,这是由于自型样依附分类器142至数据对时钟边缘偏差计算器144的传输是数字的。于该第一实施例的一变化例中,写入脉冲控制器150可透过直接连接而被耦接至型样依附分类器142,而数据对时钟边缘偏差计算器144也可透过直接连接而被耦接至八对十四调变长度侦测器130。
于该第一实施例的一变化例中,被使用于计算所述差值以产生对应于一特定数据集类型(Ln0*T,Pm0*T)的数据对时钟边缘偏差的目标数据对时钟边缘长度,可以是对应于该特定数据集类型(Ln0*T,Pm0*T)的多个数据对时钟边缘长度的一平均值。相仿地,被使用于计算所述差值以产生对应于一特定数据集类型(Pn0*T,Lm0*T)的数据对时钟边缘偏差的目标数据对时钟边缘长度,可以是对应于该特定数据集类型(Pn0*T,Lm0*T)的多个数据对时钟边缘长度的一平均值。于该第一实施例的另一变化例中,被使用于计算所述差值以产生对应于一特定数据集类型(Ln0*T,Pm0*T)或(Pn0*T,Lm0*T)的数据对时钟边缘偏差的目标数据对时钟边缘长度,可以是对应于该特定数据集类型(Ln0*T,Pm0*T)的多个数据对时钟边缘长度、以及对应于该特定数据集类型(Pn0*T,Lm0*T)的多个数据对时钟边缘长度的一平均值。
需要留意的是,该多个上述的写入策略参数,例如Ttopr(n,m)与Tlast(n,m),皆可以被自动地微调,这是由于本发明中不再需要一些特定装置(例如上述的示波器)。另外,在没有外部装置的协助下,写入脉冲控制器150可依据计算模块140所产生的该多个数据对时钟边缘偏差来微调该多个写入策略参数,所以依据本发明,该多个写入策略参数可于系统或芯片上(on systemor on chip)被自动地微调。借由依据该多个数据对时钟边缘偏差来微调该多个写入策略参数,对应于促使被写到光学储存媒体102上的最新数据(其是借由使用最近更新的写入策略参数而写上的)的凹洞长度或平面长度可逼近或达到T的目标倍数。
图3为依据本发明一实施例、用来微调一光学储存装置的多个写入策略参数的方法910的流程图。方法910可透过图1所示的系统100C来实施。
于步骤912中,在光学储存装置100中的一微处理单元(micro-processing unit,MPU)所执行的一韧体码的控制下,光学储存装置100借由使用对应于光学储存装置100的一特定转速的多个写入策略参数的初始值,将数据写到光学储存媒体102上。
于步骤914中,光学储存装置100读取被写到光学储存媒体102上的最新数据以产生分切信号115。
于步骤916中,系统100C的八对十四调变长度侦测器130借由量测分切信号115来侦测多个凹洞的多个长度P与多个平面的多个长度L。
于步骤918中,计算模块140计算对应于多个数据集类型(LnT,PmT)与(PnT,LmT)的多个数据对时钟边缘偏差,其中于本实施例中,n=3、4、…、或11且m=3、4、…、或11。
于步骤920中,执行该韧体码的该微处理单元决定是否需要校正写入策略参数。若该多个任一数据对时钟边缘偏差中的任一个大于一特定门槛值,则执行该韧体码的该微处理单元决定需要校正写入策略参数,所以步骤922将被执行;否则,进入步骤910E。在某些情况下,若写入策略参数的初始值一定或是非常可能烧出不符合系统规定的品质,因此必须确定要被校正不完美,这时则该微处理单元可直接决定进入步骤922而不进行步骤920的检查。需要留意的是,依据不同的实施选择,步骤920与922中所描述的写入策略参数可为特定的一个写入策略参数或多个写入策略参数,这是由于有可能需要一次只调整一个写入策略参数,或者一次只需要调整一多个写入策略参数。类似对应于此等不同的实施选择个重复说明将不再赘述。
若执行该韧体码的该微处理单元决定进入步骤922,则系统100C如前面所述,借由使用该多个数据对时钟边缘偏差来微调一或多个该写入策略参数。
于步骤924中,于执行该韧体码的该微处理单元的控制下,光学储存装置100借由使用该多个写入策略参数于校正后(即执行步骤922之后)的最新的值,将数据写到光学储存媒体102上。
本实施例中,对应于多个目标长度组合(target length combination)的各种数据集类型的列表显示于图4中,其中每一目标长度组合为一目标凹洞长度与一目标平面长度的组合、或为一目标平面长度与一目标凹洞长度的组合。这些组合的意义已于前面解释,故不在此重复赘述。
请注意,依据本发明应用于上述的数字多用途光盘片(例如DVD-R规格或DVD+R规格的数字多用途光盘片)的另一实施例中,数据集类型(LnT,PmT)与(PnT,LmT)的总数量可如下列计算来取得为200种数据集类型10*10*2=200;这是由于对DVD-R规格或DVD+R规格的数字多用途光盘片而言,n=3、4、…、11、或14,且m=3、4、…、11、或14,其中长度为14T的凹洞或平面通常被用在数据同步的用途上。
图5为依据本发明的一第二实施例、用来微调一光学储存装置200的多个写入策略参数的系统200C的示意图。本实施例与该第一实施例相似,其差异说明如下。于该第二实施例中,输入至八对十四调变长度侦测器130的该参考信号为振荡器220所产生的一参考时钟CLK2。参考时钟CLK2的频率并不需要与八对十四调变数据时钟CLK的频率相等。
图6为依据本发明的第三实施例、用来微调一光学储存装置300的多个写入策略参数的系统300C的示意图。本实施例与该第一实施例相似,其差异说明如下。系统300C包含有一取样电路(sampling circuit),耦接至波形均衡器112以接收该重建信号,例如射频信号113。该取样电路被使用于取样该重建信号以产生一数字信号;于本实施例中,该数字信号为一数字射频信号315。如图6所示,该取样电路包含有一模拟数字转换器(analog-to-digital converter,ADC)314与一锁相回路320模拟数字转换器314依据一参考时钟CLK3借由取样来对射频信号113进行模拟数字转换,以产生数字射频信号315,而锁相回路320则依据数字射频信号315来产生参考时钟CLK3。
系统300C另包含有一个八对十四调变长度侦测器330、一计算模块340、与一写入脉冲控制器350,其中计算模块340包含有一型样依附分类器342与一数据对时钟边缘偏差计算器344。在此,被使用于侦测该多个长度的信号为数字射频信号315,而非分切信号115。八对十四调变长度侦测器330借由观测(observe)数字射频信号315的值来侦测多个时间点之间个别的多个间距,并产生该多个间距的长度,其中每一间距对应于一凹洞或一平面。这些间距的边界可透过一预定值来决定;该预定值可以是数字射频信号315所携带的一最大值与一最小值之间的中间值,例如该最大值与该最小值的平均值。如此的中间值扮演如前面各实施例所述的该分切信号一般的角色。
图7为于一重建信号(例如射频信号113)上的多个取样点(其以“”的记号来标示)的示意图,其中一特定取样点的值与一预定值(例如上述的中间值)之间的差值d3可作为用来指出(indicate)一数据对时钟边缘偏差d4的一种表示法;也就是说,差值d3就如同约略与数据对时钟边缘偏差d4成正比的一指示器读数标(indication)。依据图7所示的射频信号的波形,跨越该预定值的取样点中的大部分都会完美地对准该八对十四调变数据时钟的下降边缘,所以大部分数据对时钟边缘偏差的值为零。上述的特定取样点的值是指于特定取样时间被取样的一数值,而该数值由数字射频信号315所携带。多个这些取样点的值与该预定值之间的多个差值(例如上述的差值d3)可代表数据对时钟边缘偏差(例如上述的数据对时钟边缘偏差d4),且因此可推算出该多个对应的长度与该多个数据对时钟边缘偏差可相应地被取得。因此,计算模块340可借由计算一预定值(例如上述的中间值)以及当数字射频信号315的值跨越该预定值的多个时间点附近的数字射频信号值(即数字射频信号315的值)之间的多个差值,来取得估算出该多个数据对时钟边缘偏差。
在此,型样依附分类器342进行与型样依附分类器142相同的功能,而八对十四调变长度侦测器330则可输出多个长度L与P,其中输出信号331与输出信号131相似,并携带有这些长度L与P。本实施例的数据对时钟边缘偏差计算器344借由使用上述的接近直线的关系,即图7所示的射频信号的波形跨越该预定值处近似于直线的关系,来计算该多个数据对时钟边缘偏差。另外,写入脉冲控制器350进行与写入脉冲控制器150相同的功能,而计算模块340则可输出该多个所计算出来的数据对时钟边缘偏差,其中输出信号345与输出信号145相似,并携带有该多个数据对时钟边缘偏差的数据。
图8为图6所示的实施例的一变化例的示意图,其中本变化例使用一内插器(interpolator)416,耦接于模拟数字转换器314与锁相回路320之间。锁相回路320依据内插器416所产生的一内插信号(interpolated signal)417来产生一参考信号CLK4,而内插器416则依据数字射频信号315与参考信号CLK4来进行一内插运算(interpolation operation)。于本变化例中,八对十四调变长度侦测器330的输入被代换为内插信号417。内插器416的运作原理为熟悉此技艺者所知悉,故不在此赘述其细节。
另外,虽然于上述的各实施例中,每一数据集类型对应于两个长度的组合,例如(P,L)或(L,P),此并非本发明的限制。于本发明的其它实施例中,这些数据集类型中的一数据集类型或每一数据集类型可对应于至少一特定目标凹洞长度与多个特定目标平面长度的组合、或至少一特定目标平面长度与多个特定目标凹洞长度的组合、或多个特定目标平面长度与多个特定目标凹洞长度的组合。例如每一数据集类型可应用如(P1,L,P2)、(L1,P,L2)…等三个长度的组合。于是,该多个写入策略参数可进一步依据更多相邻凹洞或平面的长度而被微调。
需要留意的是,本发明可借由使用具有多个有区别的(distinct)组件组合而成的的硬件、或借由使用执行适当地软件或轫体设计妥程序的计算机来实施。另外,于申请专利范围中、或上述详细说明中所揭露的系统了多个组件的系统项当中,有些组件可借由使用同一硬件或软件装置来实现。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。
权利要求
1.一种用来微调一光学储存装置的写入策略参数的方法,其包含有侦测多个长度,每一长度对应于该光学储存装置所存取的一光学储存媒体上的一凹洞或一平面;进行对应于多个数据集类型的计算,以及产生分别对应于所述多个数据集类型的多个数据对时钟边缘偏差,其中每一数据集类型对应于至少一特定目标凹洞长度与至少一特定目标平面长度的组合,或至少一特定目标平面长度与至少一特定目标凹洞长度的组合;以及使用所述多个数据对时钟边缘偏差微调分别对应于所述多个数据集类型的所述写入策略参数。
2.如权利要求1所述的方法,其中侦测所述多个长度的步骤另包含有依据存取该光学储存媒体的该光学储存装置所产生的一重建信号来侦测所述多个长度。
3.如权利要求2所述的方法,其中侦测所述多个长度的步骤另包含有分切该重建信号以产生一分切信号;以及侦测该分切信号的多个上升边缘与多个下降边缘之间的多个间距及/或该分切信号的多个下降边缘与多个上升边缘之间的多个间距,来作为所述长度,其中每一间距对应于一凹洞或一平面。
4.如权利要求3所述的方法,其中进行对应于所述多个数据集类型的计算以及产生分别对应于所述多个数据集类型的所述多个数据对时钟边缘偏差的步骤另包含有计算多个数据对时钟边缘长度,每一数据对时钟边缘长度为一第一参考时钟的一上升或下降边缘以及该分切信号的一上升或下降边缘之间的间距;以及计算多个差值以产生分别对应于所述多个数据集类型的所述多个数据对时钟边缘偏差,每一差值为一数据对时钟边缘长度与一目标数据对时钟边缘长度之间的差值,其中该目标数据对时钟边缘长度为对应于一特定数据集类型的一预定值、或为对应一特定数据集类型的多个数据对时钟边缘长度的平均值。
5.如权利要求4所述的方法,其另包含有依据该分切信号来产生该第一参考时钟。
6.如权利要求5所述的方法,其中依据该分切信号来产生该第一参考时钟的步骤另包含有使用一锁相回路来产生该第一参考时钟,以及侦测所述多个长度的步骤另包含有依据该第一参考时钟来侦测所述多个长度。
7.如权利要求5所述的方法,其中依据该分切信号来产生该第一参考时钟的步骤另包含有使用一锁相回路来产生该第一参考时钟,以及侦测所述多个长度的步骤另包含有使用一振荡器来产生一第二参考时钟;以及依据该第二参考时钟来侦测所述多个长度。
8.如权利要求2所述的方法,其中侦测所述多个长度的步骤另包含有取样该重建信号以产生一数字信号;以及侦测该数字信号的值跨越一预定值的多个时间点之间的间距,以产生所述多个长度,其中每一间距对应于一凹洞或一平面。
9.如权利要求8所述的方法,其中进行对应于所述多个数据集类型的计算以及产生分别对应于所述多个数据集类型的所述多个数据对时钟边缘偏差的步骤另包含有计算于该数字信号的值跨越该预定值的多个时间点附近、该数字信号的值与该预定值之间的多个差值,以推算产生所述多个数据对时钟边缘偏差。
10.如权利要求8所述的方法,其中取样该重建信号的步骤另包含有依据一参考时钟来对该重建信号进行模拟数字转换,以产生该数字信号;以及借由使用一锁相回路,依据该数字信号来产生该参考时钟。
11.如权利要求1所述的方法,其另包含有于系统或芯片上自动地微调所述多个写入策略参数。
12.如权利要求1所述的方法,其中进行对应于所述多个数据集类型的计算以及产生分别对应于所述多个数据集类型的所述多个数据对时钟边缘偏差的步骤另包含有将多个数据集分类进所述多个数据集类型,每一数据集包含分别对应于一凹洞与一相邻的平面的长度或分别对应于一平面与一相邻的凹洞的长度;以及计算分别对应于所述多个数据集类型的所述多个数据对时钟边缘偏差。
13.如权利要求1所述的方法,其中于进行对应于所述多个数据集类型的计算以及产生分别对应于所述多个数据集类型的所述多个数据对时钟边缘偏差的步骤中,每一数据集类型对应于至少一特定目标凹洞长度与多个特定目标平面长度的组合、或至少一特定目标平面长度与多个特定目标凹洞长度的组合、或多个特定目标平面长度与多个特定目标凹洞长度的组合。
14.一种用来微调一光学储存装置的写入策略参数的系统,该系统包含有一侦测器,用来侦测多个长度,每一长度对应于该光学储存装置所存取的一光学储存媒体上的一凹洞或一平面;一计算模块,耦接至该侦测器,用来进行对应于多个数据集类型的计算,以及产生分别对应于所述数据集类型的多个数据对时钟边缘偏差,其中每一数据集类型对应于至少一特定目标凹洞长度与至少一特定目标平面长度的组合,或至少一特定目标平面长度与至少一特定目标凹洞长度的组合;以及一控制器,耦接至该计算模块,该控制器使用所述多个数据对时钟边缘偏差,而所述多个数据对时钟边缘偏差是用来微调分别对应于所述多个数据集类型的写入策略参数。
15.如权利要求14所述的系统,其中该侦测器依据存取该光学储存媒体的该光学储存装置所产生的一重建信号来侦测所述多个长度。
16.如权利要求15所述的系统,其另包含有一分切器,用来分切该重建信号以产生一分切信号;其中该侦测器侦测该分切信号的多个上升边缘与多个下降边缘之间的多个间距及/或该分切信号的多个下降边缘与多个上升边缘之间的多个间距,来作为所述多个长度,以及每一间距对应于一凹洞或一平面。
17.如权利要求16所述的系统,其中该计算模块计算多个数据对时钟边缘长度以及多个差值以产生分别对应于所述多个数据集类型的所述多个数据对时钟边缘偏差,每一数据对时钟边缘长度为一第一参考时钟的一上升或下降边缘以及该分切信号的一上升或下降边缘之间的间距,以及每一差值为一数据对时钟边缘长度与一目标数据对时钟边缘长度之间的差值,其中该目标数据对时钟边缘长度为对应于一特定数据集类型的一预定值、或为对应一特定数据集类型的多个数据对时钟边缘长度的平均值。
18.如权利要求17所述的系统,其另包含有一锁相回路,用来依据该分切信号来产生该第一参考时钟;其中该侦测器与该计算模块均耦接至该锁相回路,以及该侦测器依据该第一参考时钟来侦测所述多个长度。
19.如权利要求17所述的系统,其另包含有一锁相回路,用来依据该分切信号来产生该第一参考时钟;以及一振荡器,用来产生一第二参考时钟;其中该侦测器耦接至该振荡器且依据该第二参考时钟来侦测所述多个长度,以及该计算模块耦接至该锁相回路。
20.如权利要求15所述的系统,其另包含有一取样电路,用来取样该重建信号以产生一数字信号;其中该侦测器耦接至该取样电路且侦测该数字信号的值跨越一预定值的多个时间点之间的间距以产生所述多个长度,以及每一间距对应于一凹洞或一平面。
21.如权利要求20所述的系统,其中该计算模块计算于该数字信号的值跨越该预定值的多个时间点附近、该数字信号的值与该预定值之间的多个差值,以产生所述多个数据对时钟边缘偏差。
22.如权利要求20所述的系统,其中该取样电路另包含有一模拟数字转换器,用来依据一参考时钟来对该重建信号进行模拟数字转换,以产生该数字信号;以及一锁相回路,耦接至该模拟数字转换器,用来依据该数字信号来产生该参考时钟。
23.如权利要求20所述的系统,其中该取样电路另包含有一模拟数字转换器,用来对该重建信号进行模拟数字转换;一内插器,耦接至该模拟数字转换器,用来依据一参考时钟以及该模拟数字转换器所产生的结果来进行一内插运算,以产生该数字信号;以及一锁相回路,耦接至该内插器,用来依据该数字信号来产生该参考时钟。
24.如权利要求14所述的系统,其中所述多个写入策略参数是于系统或芯片上被自动地微调。
25.如权利要求14所述的系统,其中该计算模块另包含有一型样依附分类器,用来将多个数据集分类进所述多个数据集类型,每一数据集包含分别对应于一凹洞与一相邻的平面的长度、或分别对应于一平面与一相邻的凹洞的长度;以及一数据对时钟边缘偏差计算器,耦接至该型样依附分类器,用来计算分别对应于所述多个数据集类型的所述多个数据对时钟边缘偏差。
26.如权利要求14所述的系统,其中于该计算模块所进行的计算中,每一数据集类型是对应于至少一特定目标凹洞长度与多个特定目标平面长度的组合、或至少一特定目标平面长度与多个特定目标凹洞长度的组合、或多个特定目标平面长度与多个特定目标凹洞长度的组合。
27.如权利要求14所述的系统,其中该系统实质上为该光学储存装置。
28.如权利要求14所述的系统,其中该系统为置于该光学储存装置中的一电路,或该系统为耦接至该光学储存装置的一电路。
全文摘要
本发明提供一种用来微调一光学储存装置的多个写入策略参数的方法,其具有侦测多个长度,每一长度对应于该光学储存装置所存取的一光学储存媒体上的一凹洞或一平面;进行对应于多个数据集类型的计算,以及产生分别对应于该多个这些数据集类型的多个数据对时钟边缘偏差;以及使用该多个这些产生的数据对时钟边缘偏差,该多个数据对时钟边缘偏差用来微调分别对应于这些该多个数据集类型的写入策略参数。
文档编号G11B20/14GK1866362SQ20061007201
公开日2006年11月22日 申请日期2006年4月4日 优先权日2005年5月18日
发明者游志青, 刘元卿, 朱志雄 申请人:联发科技股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1