基于彩虹局域效应的光纤在线存储器的制作方法

文档序号:6739437阅读:156来源:国知局
专利名称:基于彩虹局域效应的光纤在线存储器的制作方法
技术领域
本发明涉及的是一种用于光存储及通信中的滤波器,特别涉及一种基于彩虹局域效应的光纤在线存储器。
背景技术
表面等离子体激元(Surface Plasmon Polaritons, SPPs)是由外部电磁场与金 属表面自由电子相互作用形成的一种相干共振,具有巨大的局部场增强效应。它能够克服衍射极限,产生许多新颖的光学现象,如负折射、超高分辨率成像、透射增强等。这些复杂的现象有可能预示着新原理、新理论、新技术。当改变金属表面结构时,表面等离子体激元的性质、色散关系、激发模式、耦合效应等都将产生重大的变化。通过SPPs与光场之间相互作用,能够实现对光传播的主动操控。利用表面等离子体激元开发的光子器件在小型化方面具有明显的优势。SPPs为发展新型光子器件、宽带通讯系统、表面等离子体光子芯片、微小光子回路、调制器和开关、数据存储、显微镜、新型光源、太阳能电池、新型光子传感器等提供了可能。目前,基于SPPs的亚波长光学成为光学和光子学中发展最为迅速的研究方向之一。金属表面等离子体的光学器件受到了越来越多的关注。光纤表面等离子传感器(见美国专利No. 5,647,030和No. 5,327,225)亦有很多报道。利用金属光栅实现耦合激发表面等离子激元的也有报道,但均是用于单峰波长的调制器件,是透射或反射式器件,不具有存储功能。传统波导基底上利用金属微纳光栅结构的表面等离子产生的彩虹捕获效应在可见光波段已得到了实验验证(Applied PhysicsLetters, 2011,98, 251103),该效应将在下一代光存储领域中具有重要意义。但目前的结构很难与现有光通信系统进行互联,将彩虹局域效应应用到光纤器件中还未见报道。

发明内容
本发明的目的在于提供一种可以实现可见光到红外波段的光信号在线存储的基于彩虹局域效应的光纤在线存储器。本发明的目的是这样实现的包括单模光纤1,所述单模光纤I上有一段D型凹槽,D型凹槽的底部距单模光纤的纤芯中心的距离d满足0彡d ( r+1 iim,其中r为纤芯的半径,D型凹槽的底部表面有利用光学微加工技术形成的金属光栅结构4。本发明还可以包括这样一些结构特征I、所述的金属光栅结构4是光栅周期A和光栅单元6栅宽t是定值,光栅单元6栅高h是呈梯度变化的梯度金属光栅,宽带光源5从梯度金属光栅单元6高度h较小的一侧注入。2、所述的金属光栅结构4是光栅单元6栅高h和光栅单元6栅宽t是定值,光栅周期A为呈啁啾变化的啁啾金属光栅,宽带光源5从啁啾金属光栅单元6周期A较小的
一侧注入。3、所述的金属光栅结构4是光栅周期A和光栅单元6栅高h是定值,光栅单元6栅宽t为呈啁啾变化的啁啾金属光栅,宽带光源5从啁啾金属光栅单元6栅宽t较小的一侧注入。4、金属光栅结构4的周期A范围为200-700纳米,光栅单元6栅高h为5-1000纳米,光栅单元6栅宽t为10-300纳米。5、所述D型凹槽是由单模光纤与一段D型光纤连接构成,或对单模光纤侧抛形成。6、所述金属光栅结构4是在D型凹槽底表面直接制作的金属光栅结构,或者是先利用光刻技术在D型凹槽底表面刻光栅结构的微槽,然后将金属沉积在微槽中形成埋入式金属光栅结构。7、形成金属光栅结构4的金属材料为金、银或铝。 本发明提供了一种全光纤的基于彩虹局域效应的光纤在线存储器。该器件原理与传统光存储器不同,它是基于彩虹局域效应,即利用梯度或啁啾光栅将不同波长的等离子激元谐振局域在不同的空间位置,不同波段的光将停在不同的空间位置,可以实现可见光到红外波段的光信号在线存储。与现有技术相比,本发明的优点为I、该存储器体积小,结构简单,易于实现全光纤集成,与现有光纤技术进行互联,在光纤在线存储领域中具有重要应用;2、该存储器可以实现可见光到红外波段的光信号在线存储;3、该存储器涉及的D型光纤和侧抛光纤制作技术已很成熟。


图I (a)是梯度金属光栅突起结构的彩虹局域效应光纤在线存储器结构示意图;图I (b)是金属光栅突起结构的彩虹局域效应光纤在线存储器侧抛图;图I (C)是金属光栅单元示意图;图2是金属光栅周期A啁啾变化时彩虹局域效应光纤在线存储器侧抛图;图3是金属光栅单元的栅宽t啁啾变化时彩虹局域效应光纤在线存储器侧抛图;图4是金属光栅埋入式彩虹局域效应光纤在线存储器结构示意图。
具体实施例方式下面结合附图举例对本发明做更详细地描述本发明利用的D型光纤或侧抛光纤。侧抛光纤是通过侧面轮抛或侧面平抛得到。抛磨深度即纤芯中心距离外界的距离由抛磨时间来进行控制。本发明利用的D型光纤和侧抛光纤纤芯中心距外界距离,即D型凹槽的底部距单模光纤的纤芯中心的距离d在大于等于零至小于等于纤芯半径+1 U m,,距离d不能过大,否则倏逝波无法耦合等离子体波;部分纤芯抛磨掉,则更容易耦合等离子体波。实施例I :基于彩虹局域效应的光纤在线存储器结构如图I所示,由单模石英光纤I连接一段D型或侧抛石英光纤2构成,D型或侧抛光纤裸露于外界的纤芯3表面利用光学微加工技术形成梯度金属光栅4,金属材料为银。D型或侧抛光纤纤芯直径4000纳米,光纤纤芯被抛去2000纳米,光纤芯裸露于外界。梯度金属光栅4是在D型或侧抛光纤纤芯表面直接制作突起的梯度金属光栅,梯度金属光栅周期A和金属光栅单元的栅宽t为定值,分别为340纳米和110纳米。金属光栅单元的栅高5纳米-785纳米共40个周期,栅高梯度为20纳米。宽带光源5从梯度金属光栅高度h较小的一侧注入,不同波长的光将被局域在不同的空间位置,波长较短的光停在金属光栅高度h较小的一侧,波长越长局域位置越靠近左侧。实施例2 基于彩虹局域效应的光纤在线存储器结构如图2所示,由单模石英光纤I连接一段D型或侧抛石英光纤2构成,D型或侧抛光纤裸露于外界的纤芯3表面利用光学微加工技术形成啁啾金属光栅4,金属材料为金。D型或侧抛光纤纤芯直径4000纳米,光纤纤芯被抛去2000纳米,光纤芯裸露于外界。啁啾金属光栅4是在D型或侧抛光纤纤芯表面直接制 作突起的啁啾金属光栅,啁啾金属光栅单元的栅宽t和栅高为定值,分别为100纳米和500纳米。金属光栅周期A是线性啁啾,起始周期A是200纳米,末端周期是400纳米,金属 光栅单元共40个周期。宽带光源5从光栅周期A较小的一侧注入(左侧),不同波长的光将被局域在不同的空间位置,波长较短的光停在光栅周期较小的一侧,波长越长局域位置越靠近右侧。实施例3:基于彩虹局域效应的光纤在线存储器结构如图3所示,由单模石英光纤I连接一段D型或侧抛石英光纤2构成,D型或侧抛光纤裸露于外界的纤芯3表面利用光学微加工技术形成啁啾金属光栅4,金属材料为金。D型或侧抛光纤纤芯直径4000纳米,光纤纤芯被抛去2000纳米,光纤芯裸露于外界。啁啾金属光栅4是在D型或侧抛光纤纤芯表面直接制作突起的啁啾金属光栅,啁啾金属光栅周期A和栅高为定值,分别为300纳米和600纳米。金属光栅单元的栅宽t是线性啁啾变化的,起始栅宽t是50纳米,末端是150纳米,金属光栅单元共40个周期。宽带光源5从栅宽t较小的一侧注入(左侧),不同波长的光将被局域在不同的空间位置,波长较短的光停在栅宽较小的一侧,波长越长局域位置越靠近右侧。实施例4 基于彩虹局域效应的光纤在线存储器结构如图4所示,该结构为埋入式结构。器件由单模石英光纤I连接一段D型或侧抛石英光纤2构成,D型或侧抛光纤裸露于外界的纤芯3表面利用光学微加工技术形成啁啾金属光栅4,金属材料为金。D型或侧抛光纤纤芯直径4000纳米。梯度金属光栅结构4是先利用光刻技术在D型或侧抛光纤纤芯表面刻梯度光栅结构的微槽,然后将金属沉积在微槽中(埋入式金属光栅结构)。梯度金属光栅周期A和金属光栅单元的栅宽t为定值,分别为300纳米和100纳米。金属光栅单元的栅高5-900nm共40个周期。宽带光源5从梯度金属光栅高度h较小的一侧注入,不同波长的光将被局域在不同的空间位置,波长较短的光停在金属光栅高度h较小的一侧,波长越长局域位置越靠近左侧。理论仿真给出光纤中的电场分布,其中8为空气,150THz、180THz、200THz三个不同频率的光明显被局域在不同的空间位置。
权利要求
1.一种基于彩虹局域效应的光纤在线存储器,包括单模光纤1,其特征是所述单模光纤(I)上有一段D型凹槽,D型凹槽的底部距单模光纤的纤芯中心的距离d满足O^ d ^ r+Ι μ m,其中r为纤芯的半径,D型凹槽的底部表面有利用光学微加工技术形成的金属光栅结构(4)。
2.根据权利要求I所述的基于彩虹局域效应的光纤在线存储器,其特征是所述的金属光栅结构(4)是光栅周期Λ和光栅单元(6)栅宽t是定值,光栅单元(6)栅高h是呈梯度变化的梯度金属光栅,宽带光源(5)从梯度金属光栅单兀(6)高度h较小的一侧注入。
3.根据权利要求I所述的基于彩虹局域效应的光纤在线存储器,其特征是所述的金属光栅结构(4)是光栅单元(6)栅高h和光栅单元(6)栅宽t是定值,周期Λ为呈啁啾变化的啁啾金属光栅,宽带光源(5)从啁啾金属光栅单兀(6)周期Λ较小的一侧注入。
4.根据权利要求I所述的基于彩虹局域效应的光纤在线存储器,其特征是所述的金属光栅结构(4)是周期Λ和光栅单元(6)栅高h是定值,光栅单元(6)栅宽t为呈啁啾变化的啁啾金属光栅,宽带光源(5)从啁啾金属光栅单兀(6)栅宽t较小的一侧注入。
5.根据权利要求1-4任何一项所述的基于彩虹局域效应的光纤在线存储器,其特征是金属光栅结构(4)的周期Λ范围为200-700纳米,光栅单元(6)栅高h为5-1000纳米,光栅单元(6)栅宽t为10-300纳米。
6.根据权利要求1-4任何一项所述的基于彩虹局域效应的光纤在线存储器,其特征是所述D型凹槽是由单模光纤与一段D型光纤连接构成,或对单模光纤侧抛形成。
7.根据权利要求5所述的基于彩虹局域效应的光纤在线存储器,其特征是所述D型凹槽是由单模光纤与一段D型光纤连接构成,或对单模光纤侧抛形成。
8.根据权利要求1-4任何一项所述的基于彩虹局域效应的光纤在线存储器,其特征是所述金属光栅结构4是在D型凹槽底表面直接制作的金属光栅结构,或者是先利用光刻技术在D型凹槽底表面刻光栅结构的微槽,然后将金属沉积在微槽中形成埋入式金属光栅结构。
9.根据权利要求5所述的基于彩虹局域效应的光纤在线存储器,其特征是所述金属光栅结构4是在D型凹槽底表面直接制作的金属光栅结构,或者是先利用光刻技术在D型凹槽底表面刻光栅结构的微槽,然后将金属沉积在微槽中形成埋入式金属光栅结构。
10.根据权利要求6所述的基于彩虹局域效应的光纤在线存储器,其特征是所述金属光栅结构4是在D型凹槽底表面直接制作的金属光栅结构,或者是先利用光刻技术在D型凹槽底表面刻光栅结构的微槽,然后将金属沉积在微槽中形成埋入式金属光栅结构。
全文摘要
本发明提供的是一种基于彩虹局域效应的光纤在线存储器,包括单模光纤1,其特征是所述单模光纤(1)上有一段D型凹槽,D型凹槽的底部距单模光纤的纤芯中心的距离d满足0≤d≤r+1μm,其中r为纤芯的半径,D型凹槽的底部表面有利用光学微加工技术形成的金属光栅结构(4)。本发明是基于彩虹局域效应,即利用梯度或啁啾光栅将不同波长的等离子激元谐振局域在不同的空间位置,不同波段的光将停在不同的空间位置,可以实现可见光到红外波段的光信号在线存储。
文档编号G11B5/31GK102768837SQ201210235908
公开日2012年11月7日 申请日期2012年7月9日 优先权日2012年7月9日
发明者关春颖, 史金辉, 苑立波, 那波 申请人:哈尔滨工程大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1