随机存取记忆体单元及电阻式随机存取记忆体单元的操作方法与流程

文档序号:23059114发布日期:2020-11-25 17:40阅读:155来源:国知局
随机存取记忆体单元及电阻式随机存取记忆体单元的操作方法与流程

本揭露是关于随机存取记忆体单元及电阻式随机存取记忆体单元的操作方法。



背景技术:

许多现代电子装置包含用以储存数据的电子记忆体。电子记忆体可以是挥发性记忆体或非挥发性记忆体。挥发性记忆体在通电时储存数据,而非挥发性记忆体能够在断电时储存数据。电阻式随机存取记忆体(resistiverandomaccessmemory;rram)是下一代非挥发性记忆体技术的一个有潜力的候选者。rram具有简单的结构、占用的单元面积小、具有低开关电压和快速的开关时间且与互补式金氧半导(complementarymetal-oxide-semiconductor;cmos)制程兼容。



技术实现要素:

于部分实施方式中,提供一种操作电阻式随机存取记忆体(rram)单元的方法。该方法包含通过以下步骤对rram单元进行重置操作:对rram单元施加第一电压偏压,其中第一电压偏压具有第一极性,其中第一电压偏压的施加诱使该rram单元从低电阻变为中间电阻,并且其中中间电阻大于低电阻;且对rram单元施加第二电压偏压,其中第二电压偏压具有第二极性,其中第二极性与第一极性相反,并且其中第二电压偏压的施加诱使该rram单元具有高电阻,其中高电阻大于中间电阻。

于部分实施方式中,提供一种操作电阻式随机存取记忆体(rram)单元的方法。该方法包含对rram单元施加读取电压,以决定在读取电压下的第一电阻,其中该读取电压具有第一极性;通过对rram单元施加第一写入电压,进行重置操作中的第一步骤,其中第一写入电压具有与第一极性相反的第二极性,其中第一写入电压的绝对值大于读取电压的绝对值;通过对rram单元施加第二写入电压,进行重置操作中的第二步骤,其中第二写入电压具有第一极性,其中第二写入电压的绝对值大于读取电压的绝对值;以及对rram单元施加读取电压,以决定在读取电压下的第二电阻,其中第二电阻大于第一电阻。

于部分实施方式中,一种随机存取记忆体单元,包含:一高k介电层,设置在一底部电极上,其中高k介电层用以在高电阻状态和低电阻状态之间转换;以及控制器电路,耦合到ram单元,其中控制器电路用以通过施加具有第一极性的第一电压偏压接着施加具有与第一极性相反的第二极性的第二电压偏压,来进行重置操作,使得高k介电层处于高电阻状态,并且其中控制器电路用以通过施加具有第二极性的第三电压偏压来进行设置操作,其中第三电压偏压大于第二电压偏压,使得高k介电层处于相对于高电阻状态的低电阻状态。

附图说明

根据以下详细说明并配合阅读附图,使本揭露的态样获致较佳的理解。须注意的是,根据业界的标准作法,附图的各种特征并未按照比例绘示。事实上,为了进行清楚的讨论,特征的尺寸可以经过任意的缩放。

图1绘示耦接控制器电路的电阻式随机存取记忆体(resistiverandomaccessmemory;rram)单元的部分实施方式的剖面图;

图2绘示具有偏压电路的rram阵列的部分实施方式的示意图,其中该偏压电路用以rram阵列的rram单元的进行设定操作以及重置操作;

图3绘示具有耦接晶体管的rram单元的集成晶片的部分实施方式的剖面图;

图4a-4c绘示针对一rram单元上进行的二阶重置操作的电流对电压关系图的部分实施方式;

图5a与图5b绘示针对一rram单元上进行的二阶重置操作以及设定操作的电流对电压关系图的部分实施方式;

图6a与图6b绘示关于在一rram单元上进行的二阶重置操作以及设定操作的方法的时序图的部分实施方式;

图7绘示关于在一rram单元上进行读取操作的方法的时序图的部分实施方式,其中该读取操作在二阶重置操作以及设定操作之间进行;

图8绘示关于在一rram单元上进行的二阶重置操作的方法的部分实施方式的流程图。

【符号说明】

100...剖面图

102...rram单元

104...底部电极

106...高k介电层

108...顶部电极

110...覆盖层

200...示意图

202...晶体管

204...列电路

206...偏压电路

300...剖面图

304...基板

306...源极

308...漏极

310...栅极介电层

312...栅极

314...内连接通孔

316...内连接线

400a、400b、400c...曲线图

402...第一重置操作步骤

404...第一重置电压

405...第一重置读取数据

406...第一重置停止电压

407...第二重置操作步骤

408...第二重置电压

409...第二重置读取数据

410...随着第二重置停止电压

412...读取电压

414...第一重置读取电流

416...第二重置读取电流

500a、500b...曲线图

502...设定电压

504...设定停止电压

506...设定操作

509...设定读取数据

510...设定读取电流

512...记忆体窗口

600a、600b...时序图

602...二阶重置操作方法

604...第一重置脉冲步骤

606...第二重置脉冲步骤

608...设定操作方法

700...时序图

702...读取操作

800...方法

802、804、806、808、802a、802b、806a…动作

wl...字元线

sl...选择线、源极线

bl...位元线

t1...第一时间长度

t2...第二时间长度

a~k...脉冲

具体实施方式

以下本揭露将提供许多个不同的实施方式或实施例以实现所提供的专利标的的不同特征。许多元件与设置将以特定实施例在以下说明,以简化本揭露。当然这些实施例仅用以示例而不应用以限制本揭露。举例而言,叙述“第一特征形成于第二特征上”包含多种实施方式,其中涵盖第一特征与第二特征直接接触,以及额外的特征形成于第一特征与第二特征之间而使两者不直接接触。此外,于各式各样的实施例中,本揭露可能会重复标号以及/或标注字母。此重复是为了简化并清楚说明,而非意图表明这些讨论的各种实施方式以及/或配置之间的关系。

更甚者,空间相对的词汇,例如“下层的”、“低于”、“下方”、“之下”、“上层的”、“上方”等相关词汇,于此用以简单描述元件或特征与另一元件或特征的关系,如图所示。在使用或操作时,除了图中所绘示的转向之外,这些空间相对的词汇涵盖装置的不同的转向。或者,这些装置可旋转(旋转90度或其他角度),且在此使用的空间相对的描述语可作对应的解读。

电阻式随机存取记忆体(resistiverandomaccessmemory;rram)装置大体上包含高k介电材料的一层体,该高k介电材料的层体布置在导电电极之间,导电电极耦合至控制电路。rram装置是用以根据电阻状态之间的可逆切换过程进行操作。通过选择地形成穿过该高k介电材料层体的丝状导电通道(conductivefilament),可以实现这种可逆切换。举例而言,通过在导电电极之间施加电压,以形成延伸穿过高k介电质材料层体的丝状导电通道,可以使常态是绝缘的高k介电材料层体导电。举例而言,当形成丝状导电通道时发生低电阻状态,而当丝状导电通道断裂时发生高电阻状态。具有第一(例如高)电阻状态的rram单元对应于第一数据值(例如逻辑“0”),具有第二(例如低)电阻状态的rram单元对应于第二数据值(例如逻辑“1”)。

在被称为双极rram单元的部分实施方式中,在电阻状态之间可逆切换的过程包含设定操作和重置操作,其利用极性相反的电压进行。设定操作和重置操作将数据写入rram单元。设定操作向rram单元施加具有第一极性的设定电压,以将rram单元从对应于第一数据值(例如逻辑“0”)的高电阻状态改变为对应于第二数据值(例如逻辑“1”)的低电阻状态。重置操作向rram单元施加具有与第一极性相反的第二极性的重置电压,以将rram单元从对应于第二数据值(例如逻辑“1”)的低电阻状态改变为对应于第一数据值(例如逻辑“0”)的高电阻状态。

当向rram单元施加读取电压以进行读取操作时,检测到读取电流,其指示对应于第二数据值的低电阻状态(例如逻辑“1”)或对应于第一数据值(例如逻辑“0”)的高电阻状态。在施加读取电压时在低电阻状态下的读取电流与在施加读取电压时在高电阻状态下的读取电流之间的差值,即为记忆体窗口(memorywindow)。在未来的技术节点中,由于性能和可靠度特性的衰减,rram单元的尺寸缩减可能是受限的。举例而言,随着rram单元的尺寸减小,记忆体窗口也减小,从而更难以从rram单元精确地读取数据状态。

本公开的各种实施例提供了一种进行二阶重置操作以扩大rram单元的记忆体窗口的方法,从而提高了rram装置的可靠度。重置操作的第一步骤是向rram单元施加具有第一极性第一重置电压,以将rram单元从低电阻状态改变为高电阻状态。重置操作的第二步骤是将向rram单元施加具有与第一极性相反的第二极性的第二重置电压,以将rram单元置于甚至更高的电阻状态。第二重置电压具有与rram单元的设定电压相同的极性,并且小于设定电压。此二阶重置操作会导致rram单元在高电阻状态下具有较低的读取电流,从而有利于使rram单元的记忆体窗口变大,而无需为了承载更高的最大电流能力调整rram单元设计、实质上改变重置操作程序或者实质上改变重置操作的时间。

图1绘示耦接控制器电路的rram单元的部分实施方式的剖面图100。

剖面图100包含rram单元102,其包含设置在底部电极104上方的高k介电层106。在部分实施方式中,rram单元102包含顶部电极108,其设置在高k介电层106上方。在部分实施方式中,覆盖层110设置在顶部电极108和高k介电层106之间。rram单元102的底部电极104和顶部电极108耦合到控制器电路112。控制器电路112用以在rram单元102上施加各种电压偏压,以通过断开或重新形成高k介电层106中的丝状导电通道(conductivefilament)来改变高k介电层106的电阻状态。在部分实施方式中,控制器电路112用以对rram单元102进行二阶重置操作,以将高k介电层106从低电阻状态改变为高电阻状态。二阶重置操作将rram单元的记忆体窗口最大化,以更好地区分对应于第一数据值(例如逻辑“0”)的高电阻状态和对应于第二数据值(例如逻辑“1”)的低电阻状态。

图2绘示具有rram阵列的部分实施方式的示意图200。

示意图200包含许多行和列的图1的rram单元102,其耦合到晶体管202。每个晶体管202具有控制晶体管202的功率状态(例如开/关)的栅极,其中该栅极由晶体管202受到字元线wl的控制,字元线wl耦合至列电路(rowcircuitry)204。每个rram单元102和相应的晶体管202通过选择线sl和位元线bl耦合到偏压电路206。在部分实施方式中,晶体管202、列电路204和偏压电路206构成图1的控制器电路112。

基于接收到的地址,列电路204用以选择性地将电流/电压施加到rram阵列中的特定字元线wl。根据接收到的地址和其他接收到的信号,偏压电路206通过选择性地将电压偏压施加到特定的选择线sl和特定的位元线bl上,偏压电路206能够将数据值读出或写到rram阵列,一次一个或多个rram单元102。因此,当特定rram单元102的字元线wl“导通”并且在该特定rram单元102关联的选择线sl和位元线bl上出现电压偏压时,特定rram单元102被选择性地存取并且对特定rram单元102进行读取或写入操作。

在部分实施方式中,由偏压电路206进行的写入操作包含二阶重置操作和设定操作。为了进行二阶重置操作中的第一步骤,偏压电路206用以在rram单元102的特定选择线sl和特定位元线bl上施加第一电压偏压,其中第一电压偏压具有第一极性。为了进行二阶重置操作中的第二步骤,偏压电路206用以在特定选择线sl和特定位元线bl上施加第二电压偏压,其中第二电压偏压具有与第一极性相反的第二极性。在二阶重置操作之后,rram单元102处于对应于第一数据值(例如逻辑“0”)的高电阻状态。为了将rram单元102从高电阻状态改变为低电阻状态,可以进行设定操作。为了进行设定操作,偏压电路206用以在rram单元102的特定选择线sl和特定位元线bl之间施加第三电压偏压,其中第三电压偏压具有第二极性并且大于第二偏压。为了对rram单元102进行读取操作,偏压电路206用以在特定选择线sl和特定位线bl之间施加读取电压偏压。为了准确地读取rram单元102并防止切换电阻状态,读取电压偏压的绝对值小于第一电压偏压的绝对值、第二电压偏压的绝对值和第三电压偏压的绝对值。

图3绘示集成晶片的剖面图300,其中集成晶片具有耦接晶体管的rram单元。

在部分实施方式中,图3中的剖面图300可以对应于耦合到图2的rram阵列中的每个晶体管202的每个rram单元102。晶体管202包含设置在基板304中的源极306和漏极308。栅极312在基板304上方并且在源极306和漏极308之间。栅极介电层310可以将栅极312与基板304分隔开来。在部分实施方式中,源极306耦合到源极线sl。源极线sl可以是内连接线316,其经由内连接通孔314耦合到源极306。在部分实施方式中,栅极312耦合到字元线wl。晶体管202的漏极308可以通过内连接线316和内连接通孔314耦合到rram单元102。图3的rram单元102包含与图1的rram单元102相同的特征。rram单元102可以耦合到位元线bl。在部分实施方式中,内连接通孔314将位元线bl耦合到rram单元102的顶部电极108。然而,在其他实施方式中,rram单元102不包含覆盖层110或顶部电极108。因此,rram单元102的高k介电层106可以直接耦合到内连接通孔314,使得高k介电层106通过内连接通孔314耦合到位元线bl。

尽管在剖面图300中将晶体管202图示为金属氧化物半导体场效应晶体管(metal-oxide-semiconductorfieldeffecttransistor;mosfet),但是应当理解,在其他实施方式中,晶体管202也可以是双极性接面型晶体管(bipolarjunctiontransistor;bjt)、高电子迁移率晶体管(highelectronmobilitytransistor;hemt)或其相似物。更甚者,尽管所公开的方法和设备是以相关于rram单元102进行描述,但是应当理解,所公开的方法和设备不限于这种类型的记忆体装置。而是,在替代实施方式中,所公开的方法和设备可以应用于涉及丝状导电通道的形成的其他类型的记忆体装置,利如导电桥接随机存取记忆体(conductivebridgingrandom-accessmemory;cbram)、纳米碳管(carbonnanotube;cnt)记忆体或其类似物。

在部分实施方式中,rram单元102的底部电极104可以具有在大约1纳米与大约200纳米之间的范围内的厚度。在部分实施方式中,底部电极104可以包含金属、金属氮化物、金属氧化物或掺杂多晶硅。举例而言,在各种实施方式中,底部电极104可以包含铝、钛、钽、金、铂、钨、镍、铱、氮化钛、氮化钽、氧化铱、n+多晶硅、p+多晶硅或其相似物。

在部分实施方式中,高k介电层106包含单层,而在其他实施方式中,高k介电层106包含多于一层。在部分实施方式中,rram单元102的高k介电层106可以具有在大约1纳米与大约100纳米之间的范围内的厚度。在部分实施方式中,高k介电层106可以包含金属氧化物、金属氮氧化物或化合物-金属氧化物。举例而言,在各式各样的实施方式中,高k介电层106可以包含氧化钛、氧化铪、氧化铝铪、氧化钽铪、氧化钨、氧化锆、氧化铝、氧化锶或其相似物。

在部分实施方式中,rram单元102的覆盖层110可以具有在大约0纳米与大约500纳米之间的范围内的厚度。在部分实施方式中,覆盖层110包含高氧亲和力(highoxygenaffinity)材料(例如金属或金属氧化物)。举例而言,在各式各样的实施方式中,覆盖层110可以包含铝、钛、钽、氧化钛、氧化铪、氧化锆、氧化锗、氧化铈或其相似物。

在部分实施方式中,rram单元102的顶部电极108可以具有在大约0纳米与大约500纳米之间的范围内的厚度。在部分实施方式中,顶部电极108包含金属、金属氮化物或掺杂多晶硅。举例而言,在各式各样的实施方式中,顶部电极108可以包含铝、钛、钽、金、铂、钨、镍、铱、氮化钛、氮化钽、n+多晶硅、p+多晶硅或其相似物。在部分实施方式中,顶部电极108包含与底部电极104相同的材料。在其他实施方式中,顶部电极108包含与底部电极104不同的材料。

图4a绘示曲线图400a,该曲线图400a展示出了根据二阶重置操作以将数据写入rram单元(图1的102)时,rram单元(图1的102)的电流随着控制器电路(图1的112)施加的电压如何变化。

第一重置操作步骤402绘示如何在rram单元(图1的102)中定义第一重置电压404。在第一重置操作步骤402中,对rram单元(图1的102)施加具有第一极性(例如负极性)的电压,并且电流随着电压在第一极性方向上(例如负)增加而增加。当第一重置操作步骤402的电压达到第一重置电压404时,电流开始随着电压的增加而减小,这表明rram单元(图1的102)的电阻状态从低电阻状态改变为中间电阻状态,其中中间电阻状态是与低电阻状态相比更高的电阻的状态。在部分实施方式中,第一重置电压404可以被定义为第一重置操作步骤402的局部最大值。第一重置操作步骤402具有可变的末端端点,该末端端点被定义为第一重置停止电压406,在部分实施方式中,第一重置停止电压406的绝对值大于或等于第一重置电压404的绝对值。在部分实施方式中,随着第一重置停止电压406沿第一极性方向增加(例如负),电流可以进一步减小,从而进一步增加rram单元(图1的102)的电阻状态。

在第一重置操作步骤402之后是第二重置操作步骤407,其用于确定rram单元(图1的102)的第二重置电压408。在第二重置操作步骤407中,对rram单元(图1的102)施加具有第二极性(例如正极性)的电压,第二极性(例如正极性)与第一极性(例如负极性)相反,并且沿第二极性方向(例如正)电流随着电压增加而增加。然而,当第二重置操作步骤407的电压达到第二重置电压408时,电流开始随着电压的增加而减小,这表明rram单元(图1的102)的电阻状态从中间电阻状态变为高电阻状态。在部分实施方式中,第二重置电压408可以被定义为第二重置操作步骤407的局部最大值。第二重置操作步骤407具有可变的末端端点,该末端端点被定义为第二重置停止电压410,在部分实施方式中,第二重置停止电压410的绝对值大于或等于第一重置电压404的绝对值。在部分实施方式中,随着第二重置停止电压410沿第二极性方向(例如正)增加,电流可以进一步减小,从而进一步增加rram单元(图1的102)的电阻状态。在完成二阶重置操作时,rram单元(图1的102)处于对应于第一数据值(例如逻辑“0”)的高电阻状态。

图4b绘示电流绝对值对电压绝对值的曲线图400b,其包含从图4a的曲线图400a中取得的用于写入数据的二阶重置操作的范例性电流对电压特性(ivcharacteristic),但在相同象限上呈现。

在部分实施方式中,第一重置电压404的绝对值大于第二重置电压408的绝对值。在其他实施方式中,第一重置电压404的绝对值可以小于或等于第二重置电压408的绝对值。在部分实施方式中,在相同的电压点下,第一重置操作步骤402具有比第二重置操作步骤407更高的电流值。

图4c绘示曲线图400c,其绘示了在二阶重置操作的每个步骤之后进行的读取操作的读取电流对读取电压的特性。

曲线图400c绘示对应于第一重置操作步骤(图4b的402)的第一重置读取数据405,以及对应于第二重置操作步骤(图4b的407)的第二重置读取数据409。换句话说,在第一重置操作步骤(图4b的402)进行之后,当对rram单元(图1的102)施加读取电压412时,第一重置读取数据405示出例如第一重置读取电流414。类似地,在第二重置操作步骤(图4b的407)的进行之后,当对rram单元(图1的102)施加读取电压412时,第二重置读取数据409例如示出第二重置读取电流416。在许多实施方式中,读取电压412的绝对值小于第一重置电压404的绝对值且也小于第二重置电压408的绝对值,使得读取电压412不改变rram单元(图1的102)的电阻状态。

在曲线图400c中,在第一重置操作步骤(图4b的402)之后,将第一重置读取数据405外推超过第二重置电压408,以示出第一重置读取数据405的中间电阻状态。类似地,在曲线图400c中,在第二重置操作步骤(图4b的407)之后,将第二读取数据409外推超过第二重置电压408,以示出第二重置读取数据409的高电阻状态。换句话说,如果读取电压412的绝对值超过第一重置电压404的绝对值或第二重置电压408的绝对值,则读取电压412将例如引起第一重置操作步骤(图4b的402)或第二重置操作步骤(图4b的407),并因此改变读取电流输出,如曲线图400c中所示。

在部分实施方式中,读取电压412在大约0.1伏特与小于第一重置电压404以及第二重置电压408的一电压之间的范围内。在读取电压412处,第二重置读取电流416为小于第一重置读取电流414,显示与在第一重置操作步骤(图4b的402)之后相比,第二重置操作步骤(图4b的407)之后的rram单元(图1的102)处于更高的电阻状态。在部分实施方式中,第二重置读取电流416比第一重置读取电流414小至少百分之十。

图5a绘示用以在rram单元上写入数据的二阶重置操作和设定操作的电流-电压特性代表的曲线图500a。

曲线图500a包含图4a中的曲线图400a的第一重置操作步骤402和第二重置操作步骤407,并且另外包含设定操作506。在设定操作506中,对rram单元(图1的102)施加具有第二极性(例如正极性)的电压,随着电压的增加,电流先增加然后减少。当设定操作506的电压达到设定电压502时,随着电压增加,电流开始大幅度地增加。在部分实施方式中,在设定操作506中,当电压沿第二极性方向(例如正)增加时,设定电压502是电流相对于电压数据的局部最小值。因为在设定电压502处,随电压的增加,电流从减小改变为增加,所以rram单元(图1的102)从高电阻状态改变为低电阻状态。设定操作506具有定义为设定停止电压504的可变末端,在部分实施方式中,设定停止电压504的绝对值大于或等于设定电压502的绝对值。在部分实施方式中,随着为设定停止电压504在第二极性方向(例如正)上增加,电流可进一步增加,从而进一步减小rram单元(图1的102)的电阻状态。在部分实施方式中,设置停止电压504受到rram单元(图1的102)的最大载流能力的限制。在完成设定操作506时,rram单元(图1的102)处于对应于第二数据值(例如逻辑“1”)的低电阻状态。

在许多实施方式中,设定操作506和第二重置操作步骤407的进行是使用相同的电压极性,其先前描述为第二极性(例如正极性),而第一重置操作步骤402使用了与第二极性相反的电压极性,其先前描述为第一极性(例如负极性)。在许多实施方式中,第一重置电压404和设定电压502可以相等并且彼此极性相反。在其他实施方式中,第一重置电压404的绝对值可以大于或小于设定电压502的绝对值。在许多实施方式中,第二重置电压408小于设定电压502。更甚者,第二重置停止电压410小于设定电压502,以防止第二重置操作步骤407达到设定电压502并进行设定操作506,而非第二重置操作步骤407。如果进行的是设定操作506而非第二重置操作步骤407,rram单元(图1的102)将写入不正确的数据值;举例而言,rram单元(图1的102)将处于对应于第二数据值(例如逻辑“1”)的低电阻状态,而不是对应于第一数据值(例如逻辑“0”)的高电阻状态。在许多实施方式中,第二重置电压408的绝对值大于0.1伏特且小于设定电压502的绝对值。在许多实施方式中,第二重置电压408比设定电压502小至少5%。在许多实施方式中,第二重置操作步骤410重叠了设定操作506的开头部分。

图5b绘示曲线图500b,其绘示了在二阶重置操作之后以及在设定操作之后进行的读取操作的读取电流对读取电压的特性。

曲线图500b包含图4c中的曲线图400c的第一重置读取数据405和第二重置读取数据409,并且另外包含与设定操作(图5a的506)相应的设定读取数据509。当进行设定操作(图5a的506)之后,将读取电压412施加到rram单元(图1的102)时,设定读取数据509示出例如设定读取电流510。设定读取电流510对应于一电阻,该电阻表示rram单元(图1的102)的低电阻状态,使得当进行读取操作时,从rram单元(图1的102)读取第二数据值(例如逻辑“1”)。类似地,第二重置读取电流416对应于一电阻,该电阻表示rram单元(图1的102)的高电阻状态,使得当进行读取操作时,从rram单元(图1的102)中读取第一数据值(例如逻辑“0”)。

在许多实施方式中,读取电压412的绝对值也小于设定电压502的绝对值。另外,设定读取电流510大于第二重置读取电流416,表示与在第二重置操作步骤(图5a的407)之后相比,rram单元在设定操作(图5a的506)之后(图1的102)处于较低的电阻状态。在许多实施方式中,第一重置读取电流414大于第二重置读取电流416且小于设定读取电流510。如同在曲线图400c中一样,在曲线图500b中,将设定读取数据509外推超过第二重置电压408,以绘示在设定操作(图5a的506)之后的设定读取数据509的低电阻状态。

在读取电压412处,设定读取电流510与第二重置读取电流416之间的电流差被定义为rram单元(图1的102)的记忆体窗口512。与没有第二重置操作步骤(图5a的407)的情况下进行第一重置操作步骤(图5a的402)时存在的中间记忆体窗口511相比,第二重置读取操作步骤(图5a的407)增加rram单元(图1的102)的记忆体窗口512。当记忆体窗口511较大时,因为更容易区分rram单元(图1的102)的高电阻状态和低电阻状态,rram单元(图1的102)的读取操作更可靠,其中高电阻状态和低电阻状态可由第二重置读取电流416和设定读取电流510分别表示。

图6a绘示进行二阶重置操作和设定操作的方法的部分实施方式的时序图600a。时序图600a表示由控制器电路(图1的112)随时间施加到rram单元(图1的102)的电压偏压。

为了将与高电阻状态相关联的第一数据值(例如逻辑“0”)写入rram单元(图1的102),进行二阶重置操作方法602,其包含与第一重置操作步骤(图4a的402)相关联的第一重置脉冲步骤604和与第二重置操作步骤(图4a的407)相关联的第二重置脉冲步骤606。在部分实施方式中,第一重置脉冲步骤604包含具有第一极性(例如负极性)的单个电压脉冲,该单个电压脉冲以第一时间长度t1被施加到rram单元(图1的102)。第一重置脉冲步骤604的单个电压脉冲具有大于或等于rram单元(图1的102)的第一重置电压404的振幅,以确保达到与第一重置操作步骤(图4a的402)相关的中间电阻状态。举例而言,在部分实施方式中,第一重置脉冲步骤604的振幅可以对应于第一重置停止电压(图4a的406)。在部分实施方式中,第二重置脉冲步骤606包含在第二时间长度t2,将具有与第一极性(例如负极性)相反的第二极性(例如正极性)的单个电压脉冲施加到rram单元(图1的102)。第二重置脉冲步骤606的单个电压脉冲具有大于或等于rram单元(图1的102)的第二重置电压408的振幅,以确保达到与第二重置操作步骤(图4a的407)相关的高电阻状态。举例而言,在部分实施方式中,第二重置脉冲步骤606的振幅可以对应于第二重置停止电压(图4a的410)。如前所述,第二重置停止电压(图4a的410)小于设定电压502,因此,第二重置脉冲步骤606的幅度必须大于或等于第二重置电压408,但小于设定电压502。在二阶重设操作方法602完成时,rram单元(图1的102)处于与第一数据值(例如逻辑“0”)相关联的高电阻状态。

为了将与低电阻状态相关联的第二数据值(例如逻辑“1”)写入rram单元(图1的102),进行与设定操作(图5a的506)相关联的设定操作方法608。在部分实施方式中,设定操作方法608包含具有第二极性(例如正极性)的单个电压脉冲,该单个电压脉冲以第三时间长度t3被施加到rram单元(图1的102)。设定操作方法608的单个电压脉冲具有大于或等于rram单元(图1的102)的设定电压502的振幅,以确保达到与设定操作(图5a的506)相关的低电阻状态。举例而言,在部分实施方式中,设定操作方法608的振幅可以对应于设定停止电压(图5a的504)。在设定操作方法608完成时,rram单元(图1的102)处于与第二数据值(例如逻辑“1”)相关联的高电阻状态。

相较于使用由具有第一极性(例如负极性)的单个电压脉冲组成的单阶重置操作的其他方法相比,二阶重置操作方法602是有利的,因为第二重置脉冲步骤606进一步增加了rram单元(图1的102)的电阻状态,从而增加了rram单元(图1的102)的记忆体窗口(图5b的512),以更可靠地将数据存储在rram装置中。

应当理解,时序图600a是示例性实施方式,并且在其他实施方式中,根据于要写入到rram单元(图1的102)的期望数据,时序图600a可以仅包含二阶重置操作方法602或仅包含设定操作方法608。

图6b绘示了使用多个电压脉冲进行二阶重置操作和设定操作的方法的部分实施方式的时序图600b。举例而言,时序图600b表示通过控制器电路(图1的112)随时间施加到rram单元(图1的102)的电压偏压。

时序图600b包含图6a的二阶重置操作方法602和设定操作方法608,不同之处在于每个步骤将多个电压脉冲施加到rram单元(图1的102),以利于确保达到所需的电阻状态。举例而言,在部分实施方式中,二阶重置操作方法602的第一重置脉冲步骤604可以包含脉冲a至脉冲d。与彼此相比,脉冲a至脉冲d可以具有不同的、相同的、或部分不同且部分相同的振幅。第一重置脉冲步骤604的每个脉冲a至脉冲d具有第一极性,并且每个脉冲a至脉冲d的振幅仍然大于或等于第一重置电压404。类似地,与彼此相比,脉冲a至脉冲d可以具有不同的、相同的或部分不同且部分相同的时间长度。第一重置脉冲步骤604中的脉冲a至脉冲d的数量以及相应的振幅和时间长度取决于与第一重置操作步骤(图4a的402)相关联的中间电阻状态的实现。

在部分实施方式中,二阶重置操作方法602的第二重置脉冲步骤606可以包含脉冲e至脉冲g。与彼此相比,脉冲e至脉冲g可以具有不同的、相同的、或部分不同且部分相同的振幅。第二重置脉冲步骤606的每个脉冲e至脉冲g具有第二极性,并且每个脉冲e至脉冲g的振幅仍然大于或等于第二重置电压408但小于设定电压502。类似地,与彼此相比,脉冲e至脉冲g可以具有不同的、相同的或部分不同且部分相同的时间长度。第二重置脉冲步骤606中的脉冲e至脉冲g的数量以及相应的振幅和时间长度取决于与第二重置操作步骤(图4a的407)相关联的高电阻状态的实现。

在部分实施方式中,设置操作方法608可以包含脉冲h至脉冲k。与彼此相比,脉冲h至脉冲k可以具有不同的、相同的或部分不同且部分相同的振幅。设定操作方法608的每个脉冲h至脉冲k具有第二极性,并且每个脉冲h至脉冲k的振幅仍大于或等于设定电压502。类似地,与彼此相比,脉冲h至脉冲k可以具有不同的、相同的或部分不同且部分相同的时间长度。设定操作方法608中的脉冲h至脉冲k的数量以及相应的振幅和时间长度取决于与设定操作(图5a的506)相关的低电阻状态的实现。在部分实施方式中,每个脉冲a至脉冲k的时间长度可以例如在大约1奈秒与大约100微秒之间的范围内。在部分实施方式中,每个脉冲a至脉冲k的振幅的绝对值可以例如在大约0.2伏特至大约5伏特之间的范围内。

图7绘示进行二阶重置操作、设定操作和读取操作的方法的部分实施方式的时序图700。

时序图700包含图6a的时序图600a的二阶重置操作方法602和设定操作方法608,并增加了读取操作702。为了进行读取操作702以读取rram单元(图1的102)的数据值(例如逻辑“1”或逻辑“0”),控制器电路(图1的112)对rram单元(图1的102)施加读取电压412。在许多实施方式中,读取操作702包含振幅等于读取电压412的单个电压脉冲。读取电压412的绝对值小于第一重置电压404的绝对值、第二重置电压408的绝对值以及设定电压502的绝对值。

在部分实施方式中,可以在二阶重置操作方法602之后进行读取操作702,其中将读取电压412施加到rram单元(图1的102),并量测第二重置读取电流(图5b的416)。第二重置读取电流(图5b的416)指示在二阶重置操作方法602之后,rram单元(图1的102)处于对应于第一数据值(例如逻辑“0”)的高电阻状态。

在部分实施方式中,可以在设定操作方法608之后,进行读取操作702,其中将读取电压412施加到rram单元(图1的102),并量测设定读取电流(图5b的510)。设定读取电流(图5b的510)指示在设定操作方法608之后,rram单元(图1的102)处于对应于第二数据值(例如逻辑“1”)的低电阻状态。由于表示高电阻状态的第二重置读取电流(图5b的416)和表示低电阻状态的设定读取电流(图5b中的510)之间的记忆体窗口(图5b的512)的增加,rram单元(图1的102)的低电阻状态和高电阻状态可被检测区分开来。

图8绘示进行的二阶重置操作的方法800的部分实施方式的流程图。

尽管以下以绘示方法800且以一系列动作或事件来描述方法,但是应当理解,这样的动作或事件的绘示顺序不应以限制性的意义来解释。举例而言,除了本文绘示和/或描述之外,部分动作可以以不同的顺序发生和/或与其他动作或事件同时发生。另外,可能不需要所有绘示出的动作来实现本文描述的一个或多个态样或实施方式。此外,本文描述的一个或多个动作可以在一个或多个单独的动作和/或阶段中进行。

在动作802,通过动作802a和802b,对rram单元进行二阶重置操作。

在动作802a,对rram单元施加具有第一极性的第一电压偏压。

在动作802b,对rram单元施加具有与第一极性相反的第二极性的第二电压偏压。图6a绘示了对应于动作802、802a和802b的部分实施方式的时序图600a。

在动作804,对rram单元施加读取电压,并且量测与rram单元的高电阻状态相关联的重置读取电流。图4c和图7分别示出了对应于动作804的部分实施方式的曲线图400c和时序图700。

在动作806,通过动作806a在rram单元上进行设定操作。

在动作806a,对rram单元施加第三电压偏压,其中第三电压偏压具有第二极性并且大于第二电压偏压。图6a绘示了对应于动作806和806a的部分实施方式的时序图600a。

在动作808,对rram单元施加读取电压,并且量测与rram单元的低电阻状态相关联的设定读取电流。图5b和图7分别绘示了对应于动作808的部分实施方式的曲线图500b和时序图700。

因此,本公开涉及一种新的方法,该新方法对rram单元进行二阶重置操作以减小重置读取电流,从而增加rram单元的记忆体窗口。随着记忆体窗口的增加,rram单元可以更可靠地读取与rram单元的电阻状态相关的数据值。

据此,于部分实施方式中,本揭露是涉及一种操作电阻式随机存取记忆体(rram)单元的方法,包含通过以下步骤对rram单元进行重置操作:对rram单元施加第一电压偏压,其中第一电压偏压具有第一极性,其中第一电压偏压的施加诱使该rram单元从低电阻变为中间电阻,并且其中中间电阻大于低电阻;且对rram单元施加第二电压偏压,其中第二电压偏压具有第二极性,其中第二极性与第一极性相反,并且其中第二电压偏压的施加诱使该rram单元具有高电阻,其中高电阻大于中间电阻。

于部分实施方式中,在读取电压下量测每一低电阻、中间电阻和高电阻,并且读取电压的绝对值小于第一电压偏压的绝对值和第二电压偏压的绝对值。

于部分实施方式中,中间电阻具有在读取电压下量测的对应的第一读取电流,其中高电阻具有在读取电压下量测的对应的第二读取电流,并且其中第二读取电流至少比第一次读取电流小10%。

于部分实施方式中,方法还包含通过以下步骤对该rram单元进行一设定操作:对rram单元施加第三电压偏压,其中第三电压偏压具有第二极性,其中第三电压偏压大于第二电压偏压,并且其中第三电压偏压的施加诱使rram单元从高电阻变为低电阻。

于部分实施方式中,中间电阻具有在读取电压下量测的对应的第一读取电流,其中该低电阻具有在读取电压下量测的对应的第三读取电流,并且其中第三读取电流大于第一读取电流。

于部分实施方式中,第二电压偏压至多为第三电压偏压的95%。

于部分实施方式中,第一电压偏压包含第一脉冲和第二脉冲,其中第一脉冲包含持续第一时间长度第一重置电压,其中该第二脉冲包含持续第二时间长度的第二重置电压。

于部分实施方式中,第二电压偏压包含第一脉冲和第二脉冲,其中第一脉冲包含持续第一时间长度第一重置电压,其中该第二脉冲包含持续第二时间长度的第二重置电压。

于其他实施方式中,本揭露是涉及一种操作电阻式随机存取记忆体(rram)单元的方法,包含对rram单元施加读取电压,以决定在读取电压下的第一电阻,其中该读取电压具有第一极性;通过对rram单元施加第一写入电压,进行重置操作中的第一步骤,其中第一写入电压具有与第一极性相反的第二极性,其中第一写入电压的绝对值大于读取电压的绝对值;通过对rram单元施加第二写入电压,进行重置操作中的第二步骤,其中第二写入电压具有第一极性,其中第二写入电压的绝对值大于读取电压的绝对值;以及对rram单元施加读取电压,以决定在读取电压下的第二电阻,其中第二电阻大于第一电阻。

于部分实施方式中,在进行该重置操作的该第一步骤之后并且在进行该重置操作的该第二步骤之前,该rram单元处于一中间电阻状态,其中该中间电阻状态是在与该第一电阻相关的一电阻状态和与该第二电阻相关的一电阻状态之间。

于部分实施方式中,重置操作的该第一步骤还包括以脉冲的形式对该rram单元施加多个写入电压,其中该些多个写入电压中的每个写入电压具有一振幅和一脉冲宽度,其中该脉冲宽度是每个写入电压施加到该rram单元的一时间长度,并且其中每个写入电压的一绝对值大于或等于该第一写入电压的一绝对值。

于部分实施方式中,方法还包含通过以下步骤对该rram单元进行一设定操作:对该rram单元施加一第三写入电压,其中该第三写入电压具有该第一极性,其中该第三写入电压的一绝对值大于该第二写入电压的该绝对值;以及对该rram单元施加该读取电压,以决定在该读取电压下的一第三电阻,其中该第三电阻实质上等于该第一电阻。

于部分实施方式中,重置操作的该第二步骤还包括以脉冲的形式对该rram单元施加多个写入电压,其中该些多个写入电压中的每个写入电压具有一振幅和一脉冲宽度,其中该脉冲宽度是每个写入电压施加到该rram单元的一时间长度,并且其中每个写入电压的一绝对值大于或等于该第二写入电压的该绝对值,并且其中每个写入电压的该绝对值小于该第三写入电压的该绝对值。

于部分实施方式中,第二写入电压至多为第三写入电压的95%。

于其他实施方式中,本揭露是涉及一种随机存取记忆体单元,包含:一高k介电层,设置在一底部电极上,其中高k介电层用以在高电阻状态和低电阻状态之间转换;以及控制器电路,耦合到ram单元,其中控制器电路用以通过施加具有第一极性的第一电压偏压接着施加具有与第一极性相反的第二极性的第二电压偏压,来进行重置操作,使得高k介电层处于高电阻状态,并且其中控制器电路用以通过施加具有第二极性的第三电压偏压来进行设置操作,其中第三电压偏压大于第二电压偏压,使得高k介电层处于相对于高电阻状态的低电阻状态。

于部分实施方式中,ram单元还包含顶部电极,设置于该高k介电层上。

于部分实施方式中,ram单元还包含覆盖层,设置于高k介电层上且顶部电极之下。

于部分实施方式中,控制器电路包括一晶体管,其中该顶部电极耦合至一位元线,其中该底部电极耦合至该晶体管的一漏极,其中该晶体管的一源极耦合至一源极线,并且其中该晶体管的一栅极耦合至一字元线。

于部分实施方式中,ram单元是一电阻式随机存取记忆体单元。

于部分实施方式中,控制器电路用以通过对该ram单元施加读取电压来进行读取操作,以确定高k介电层的一电阻状态,其中该读取电压的绝对值小于第一电压偏压的绝对值、该第二电压偏压的绝对值以及第三电压偏压的绝对值。

以上概述多个实施方式的特征,该技术领域具有通常知识者可较佳地了解本揭露的多个态样。该技术领域具有通常知识者应了解,可将本揭露作为设计或修饰其他制程或结构的基础,以实行实施方式中提到的相同的目的以及/或达到相同的好处。该技术领域具有通常知识者也应了解,这些相等的结构并未超出本揭露的精神与范围,且可以进行各种改变、替换、转化,在此,本揭露精神与范围涵盖这些改变、替换、转化。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1