流场板的制作方法

文档序号:6844538阅读:536来源:国知局
专利名称:流场板的制作方法
技术领域
本发明涉及用于包含流体电解质的燃料电池、电解槽和电池的流场板及其制备。
燃料电池是把化学能直接转变成电能的电化学装置。燃料电池采用包括阳极和阴极的电极、常支撑在电极上的电催化剂以及电解质。燃料和氧化剂分别供给阳极和阴极。
固体聚合物燃料电池(SPFC)采用薄膜电极组件(MEA),由具有外加的电催化剂层的固体聚合物电解质组成,该电催化剂层夹在两个导电板之间,导电板具有穿过电极活性区分布燃料和氧化剂的流体流场。这些流场板也公知为集电板或双极板,可为MEA额外提供机械支撑。流体孔道形成在流场板表面上,以引导燃料和氧化剂分别流向流体流场。流场板中的流体排除孔道能够清除未反应的燃料和氧化剂以及在阴极形成的反应产物(例如氧/氢燃料电池中的水)。
燃料电池的性能部分取决于把燃料和氧化剂有效供给电极以及电池运行期间反应产物的有效清除。因此,流场板上的流场设计和制备是燃料电池最佳运行的重要条件。
对于大多数应用,燃料电池可串联连接,形成“叠层”,从而提高电压输出。电池之间的流场板可以是双极性,从而在板的相对表面上经流场分别分布燃料和氧化剂。在叠层中,流场板应不能透过反应物,以防止相邻电池之间的干扰。
用于燃料电池叠层中的流场板由多种材料组成。该材料需要如下性能i)与电解质的化学相容性;ii)低电阻率(接触电阻和体电阻),以便降低能量损耗;iii)不能透过H2和O2iv)板容易制备v)重量轻;和vi)有足够强度,可承受加工和高冲压。
有报道碳基流场板用于低温燃料电池特别是SPFC。碳是该应用的优良材料,具有优良的化学耐性、低密度和高的导电以及导热性。
利用模压,用片状石墨来制备流场板,其上凸起流体流动结构。例如,US5521018提供了细粒石墨(GRAFOIL)制备的流场板。
US4301222和EP784352描述了应用树脂以形成板,机械强度得到改善,但这些绝缘树脂会降低板的整体导电率,导致燃料电池叠层的损耗增大。在另一发明中,碳纤维已加入到聚合物/石墨材料中,提高板强度和导电率。然而,US4339322所公开的板的电阻系数远远高于只由石墨制备的板。
如US5686199所述,可加工细粒石墨板,形成流体流动图案。然而,由于该材料的机械强度低,这些板厚得令人难于接受。同时,在碳板上加工流体流场是个慢工序,该材料对工具磨损快。与标准碳材料相比,碳纤维复合材料更耐磨,更易损伤切割工具。由于采用高价的专业设备,应避免这些材料。
因此,对于由理想材料制备流场板,目前的技术尚不能提供快速、低成本的工艺。
对于一些特定应用,以前描述过砂磨、珠磨或喷砂,例如在石头、木头、陶瓷品、塑料、玻璃和玻璃加强塑料上作记号和装饰图案(例如US4 828 893和US4 985 101)以及表面清洁或弄糙处理。也已采用砂磨来形成等离子体显示装置(EP0 722 179)和制备磁转换头(US4 188247)。
本发明提供制备电化学电池元件例如流场板的新颖、有效和改进的方法。该方法采用低成本、快速的侵蚀蚀刻,能形成流体流动图案、流体进入孔道和流体排出孔道以及密封凹槽。
因此,按照本发明,提供了流场板的制备方法,包括利用颗粒蚀刻剂、颗粒蚀刻加速器和耐颗粒蚀刻剂图案掩模对板材料进行颗粒蚀刻,,从而由所述掩模上的图案设计确定的流体流动图案形成在所述板材料上。
用于本发明的板材料可包括导电材料。该导电材料可包括碳基材料。此外,板材料可包括碳纤维复合材料。该碳纤维复合材料可用聚合物填料例如环氧树脂使其致密。惊奇地发现,碳纤维复合材料中的碳纤维和基质的颗粒蚀刻速率相同,从而未对形成在这种材料中的构图凹槽的最终结构产生不利影响。
颗粒蚀刻包括砂磨,颗粒蚀刻加速器可包括砂磨枪。颗粒蚀刻也可包括喷砂。此外,颗粒蚀刻可包括磨料水射喷砂(也称为磨料水射切割)。本发明需要颗粒蚀刻剂包含磨料介质,它比要蚀刻的板材料具有更大硬度。颗粒蚀刻剂可以是直径180-220μm的硅石砂,用于蚀刻石墨化碳-碳复合材料的板材料。
本工艺使用了耐颗粒蚀刻剂掩模,掩模被适当构图并覆盖要蚀刻的材料表面。掩模可以由能承受颗粒蚀刻所引起的侵蚀磨损的材料组成。掩模应紧靠近板材料,以便能形成精细图案,从而通过粘合物质可将掩模与板材料保持接触。
耐颗粒蚀刻剂构图掩模可以是光致抗蚀剂掩模。在例如US4764449中公开了形成光致抗蚀剂掩模的技术。US4764499中,形成所需设计的负掩模,从而粘附掩模之后利用砂磨侵蚀曝露的玻璃或木头。
耐颗粒蚀刻剂构图掩模可包括乙烯基聚合物。在此,切割乙烯基标签以成形,形成所需图案的负掩模(参见US4828893)。
图案设计可确定流场板的流体进入孔道和流体排出孔道。例如,流体进入孔道可以是流体入口,而流体排出孔道可以是流场板的流体出口。如果只经一个表面蚀刻通过板的孔道,某些耐蚀剂会失效。因此,流体进入孔道和流体排出孔道可通过蚀刻流场板的相对表面上的对准位置而形成。
图案设计也可确定所述流场板上用于密封的凹槽。
颗粒蚀刻可受二轴扫描机械控制,二轴扫描机械确定颗粒蚀刻加速器相对板材料的运动。二轴扫描机械能使板材料相对于颗粒蚀刻加速器预定运动,运动的形式可以是光栅图案或步进扫描图案。当板材料的表面面积接近或大于颗粒蚀刻加速器的颗粒扩散时,扫描机械特别有用。
按照本发明制备的流场板可引入在包含流体电解质的燃料电池、电解槽和电池中。电解槽是将水分解成氢和氧的装置,其结构类似于燃料电池。
参考附图,利用如下描述可进一步清楚本发明,仅通过例子表示包括不同材料的流场板的制备方法。
附图

图1是说明在双极流场板上制备流体流动凹槽所用颗粒蚀刻方法的示意侧剖视图;和图2是说明在流场板上制备流体流体入口或出口所用颗粒蚀刻方法的示意侧剖视图,。
图1中,颗粒蚀刻制备的流场板100包括板材料3和两个相对表面,每个表面层压有所制备的耐颗粒蚀刻构图掩模1和10已粘附其上的粘合剂2和20。粘合剂2和20必须提供足够的粘合力,以便在颗粒蚀刻工艺6期间牢固保持掩模1和10就位。优选粘合剂2和20是水溶性的,从而在蚀刻之后掩模1和10可容易从板材料3清除。掩模1和10可放置在支撑膜上,在掩模1和10已粘附到粘合剂20上之后,剥离支撑膜。
板材料3包括碳纤维复合物,从而整体具有优良机械性能,而不损失机械性能。掺杂碳纤维可改善板材料3的导热性,如果下游电应用包括高电流密度的使用,导热性是一个重要特征。典型的碳-碳复合材料的制备方法已公知(参见Thomas,C.R.[Editor],1993,Essentialsof carbon-carton composites,Cambridge Royal Society of ChemistryPress,Cambridge,ISBN0851868045)。
用于板材料3的高密度碳-碳复合材料昂贵,部分致密的材料可提供更大的前景。利用聚合物填料例如环氧树脂使其致密可克服部分致密板材料的透气性。优选树脂是低粘度,低压下能快速填充细孔并能自固化。树脂构成可以是耐碱性或酸性电解质的任何聚合物。在树脂加入到板材料3之后,未吸收的树脂应立刻从板100的表面上清除。这可通过吸收布擦洗板100来完成。当树脂在所需的条件下已固化时,板100上需要导电的表面需要清洁,以便重新曝露板材料3的导电碳。利用筛目大小为600或更高的砂布进行简单表面研磨就可完成。
耐颗粒蚀刻构图掩模1和10具有经此蚀刻板材料3的图案4和40。在板材料3的一个表面上的图案4相对于板材料3的第二表面上的图案40移位,从而可采用薄片板材料3。蚀刻工艺6包括使板100曝露给颗粒蚀刻剂(未示出),用颗粒蚀刻加速器(未示出)例如喷砂枪推动颗粒蚀刻剂。颗粒蚀刻剂是硬度高于将要蚀刻的板材料3的任何材料。对于碳素材料(除金刚石之外),优选使用细粒硅砂或铝砂。蚀刻剂大小取决于板100上所需的图案4和40的细节。
工艺6所采用的喷砂压力取决于掩模1和10、粘合剂2和20、蚀刻加速器与板材料3的目标表面之间的距离以及所用的蚀刻剂。压力上限由掩模1、10的耐侵蚀蚀刻性给定,而压力下限由磨料蚀刻剂侵蚀材料3所需的压力确定。当在适当时限内可实现基本蚀刻而不损伤掩模1和10或导致粘合剂2和20失效时的喷砂压力为最佳。
在蚀刻板100的每个表面的两个连续步骤中进行蚀刻工艺6。然而,并未排除使用多个颗粒蚀刻加速器同时在板100的两面上进行蚀刻工艺6。
蚀刻工艺6期间,板100的目标区域取决于蚀刻剂的分布。该分布又取决于颗粒蚀刻加速器与板100表面的距离以及颗粒蚀刻加速器喷嘴(未示出)的大小。如果板100的区域大于蚀刻剂分布,可以用动态方式蚀刻板100。例如,利用二轴扫描机械,使颗粒蚀刻加速器和板100相互相对移动,其中移动加速器和板100两个或其中任一个。整个移动应使加速蚀刻剂均匀覆盖板100的表面。
完成蚀刻工艺6之后,流场板200在板200的两面上具有对板材料3蚀刻的流体流场图案5和50。然后清除粘合剂2和20以及耐颗粒蚀刻构图掩模1和10。
用于流体入口或出口的流场板孔道的制备在图2示出。制备流场板300要求在板材料3的相对表面上使已构图成耐颗粒蚀刻掩模1和10的侵蚀凹槽7和70对准。利用粘合剂2和20使掩模1和10牢固保持在板材料3上。继续蚀刻工艺60直至均匀开口8从板400的一个表面通向相对表面。蚀刻板材料3的两面以便形成开口8特别重要,如果只从一个表面蚀刻,材料3会失效。
通过如下例子,将进一步描述本发明。然而,本发明的范围无论如何不受这些例子限定。
例子1(碳-碳复合板+乙烯基掩模)在一个表面上用气体径迹设计制备尺寸50×50×1.2mm的石墨化碳-碳复合板。利用所需的气体径迹设计的负图象,将乙烯基聚合物粘合剂掩模(FasCal Film[Avery,US])牢固压在复合物上。使用180-220μm硅砂的Guyson Blast System(Guyson,UK)来干砂磨该板。喷砂压力设定为4bar(400kPa),在恒定距离6”(152.4mm)下,被掩模过的材料在喷砂枪下保持30S。然后剥离乙烯基掩模,利用异丙醇清洗掉板上的粘合剂。径迹深度为0.2-0.25mm。
例子2(碳-碳复合板+光致抗蚀剂掩模)在一个表面上用气体径迹设计制备尺寸50×50×1.2mm的石墨化碳-碳复合板。对光致抗蚀剂掩模(ImagePro Super Film[ChromalineCorp.,US])显影,形成所需的气体径迹设计的负样板。利用径迹设计的照相掩模来覆盖光致抗蚀剂(具有下侧保护载体膜)和玻璃板,以将这些板紧密保持在一起,在5m的距离下将膜曝光在18W UV光源下5分钟。然后为洗去未曝光的抗蚀剂,在流水下清除(黄光下)和清洗该膜约3分钟。在普通光下空气中干燥抗蚀剂膜,形成负抗蚀剂掩模样板。在复合板表面上轻轻刷上液体压合式粘合剂(ImageProAdhesive[Chromaline Corp.,US]),空气中干燥10分钟。在粘合剂覆盖的板上压上抗蚀剂(具有载体膜),剥离载体膜。然后利用例子1(上述)所述的工艺对材料喷砂。利用流动温水溶解粘合剂,清除抗蚀剂掩模,从而展现了对碳-碳复合材料蚀刻的流场图案。
例子3(具有环氧树脂的碳-碳复合板+光致抗蚀剂掩模)在浸渍有低粘度环氧树脂(SpeciFix-20[Strers Ltd,UK])的低压(优选适宜压力小于10mmHg[约1.33kPa],但直至100mmHg[约13.3kPa]是可行的)下,保持尺寸50×50×1.2mm的石墨化碳-碳复合板。利用纸巾从板表面上清除过量的树脂。然后在标准温度和压力下,将板在空气中存放至少8小时,以便使树脂固化和硬化。制备光致抗蚀剂掩模(ImagePro Super Film),然后按例子2(上述)那样应用。然后利用例子1(上述)所述工艺对被掩模的材料喷砂。利用流动温水溶解粘合剂,清除抗蚀剂掩模。
权利要求
1.流场板的制备方法,包括利用颗粒蚀刻剂、颗粒蚀刻加速器和耐颗粒蚀刻构图掩模对板材料进行颗粒蚀刻,从而在所述板材料上形成由所述掩模上的图案设计所确定的流体流动图案。
2.按照权利要求1的方法,其中所述板材料包括导电材料。
3.按照权利要求1或2的方法,其中所述板材料包括碳基材料。
4.按照权利要求3的方法,其中所述板材料包括碳纤维复合材料。
5.按照权利要求4的方法,其中所述碳纤维复合材料用聚合物填料来使其致密。
6.按照权利要求1-5的任一个的方法,其中所述颗粒蚀刻包括砂磨。
7.按照权利要求1-5的任一个的方法,其中所述颗粒蚀刻包括珠磨。
8.按照权利要求1-5的任一个的方法,其中所述颗粒蚀刻包括喷砂。
9.按照权利要求1-5的任一个的方法,其中所述颗粒蚀刻包括磨料水射喷砂。
10.按照权利要求6的方法,其中所述颗粒蚀刻加速器包括喷砂枪。
11.按照权利要求1-10的任一个的方法,其中所述颗粒蚀刻剂包含硬度大于所述板材料的磨料介质。
12.按照权利要求11的方法,其中所述颗粒蚀刻剂是直径为180-220μm的硅砂。
13.按照权利要求12的方法,其中所述板材料是石墨化碳-碳复合材料。
14.按照权利要求1的方法,其中所述耐颗粒蚀刻构图掩模通过粘合剂物质与所述板材料保持接触。
15.按照权利要求1的方法,其中所述耐颗粒蚀刻构图掩模是光致抗蚀剂掩模。
16.按照权利要求1的方法,其中所述耐颗粒蚀刻构图掩模包括乙烯基聚合物。
17.按照权利要求1的方法,其中所述图案设计确定所述流场板上的流体进入孔道和流体排出孔道。
18.按照权利要求17的方法,其中通过蚀刻在所述流场板的相对表面上对准的位置,形成所述流体进入孔道和所述流体排出孔道,从而使所述流体进入孔道和所述流体排出孔道通过所述流场板。
19.按照权利要求1的方法,其中所述图案设计确定所述流场板上的密封凹槽。
20.按照权利要求1的方法,其中所述颗粒蚀刻受二轴扫描机械的控制,其确定所述颗粒蚀刻加速器相对于所述板材料的运动。
21.按照权利要求20的方法,其中所述二轴扫描机械能使所述板材料相对于所述颗粒蚀刻加速器进行预定运动,使所述运动形式是光栅图案或步进扫描图案。
22.利用按照权利要求1-21的任一个的方法所得到的产品。
全文摘要
本发明涉及用于燃料电池的流场板及其制备方法。制备方法包括利用颗粒蚀刻剂(例如砂磨)、颗粒蚀刻加速器和耐颗粒蚀刻构图掩模对板材料进行颗粒蚀刻,从而在板材料上形成由所述掩模上的图案设计所确定的流体流动图案。
文档编号H01M8/10GK1359544SQ0080992
公开日2002年7月17日 申请日期2000年7月4日 优先权日1999年7月8日
发明者S·J·罗文, M·C·图尔平, P·L·阿德科克, D·戴维斯 申请人:拉夫伯勒大学革新有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1